Cargando…
iScore: a novel graph kernel-based function for scoring protein–protein docking models
MOTIVATION: Protein complexes play critical roles in many aspects of biological functions. Three-dimensional (3D) structures of protein complexes are critical for gaining insights into structural bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular process...
Autores principales: | Geng, Cunliang, Jung, Yong, Renaud, Nicolas, Honavar, Vasant, Bonvin, Alexandre M J J, Xue, Li C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956772/ https://www.ncbi.nlm.nih.gov/pubmed/31199455 http://dx.doi.org/10.1093/bioinformatics/btz496 |
Ejemplares similares
-
iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines
por: Renaud, Nicolas, et al.
Publicado: (2020) -
MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein–Protein Docking Conformations
por: Jung, Yong, et al.
Publicado: (2023) -
Template-based protein–protein docking exploiting pairwise interfacial residue restraints
por: Xue, Li C, et al.
Publicado: (2017) -
GDockScore: a graph-based protein–protein docking scoring function
por: McFee, Matthew, et al.
Publicado: (2023) -
DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces
por: Réau, Manon, et al.
Publicado: (2022)