Cargando…
Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity
MOTIVATION: Nowadays, virtual screening (VS) plays a major role in the process of drug development. Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not trivial and may require target-specific fine-tuning. Furthermore, drug design also requires improved p...
Autores principales: | Schneider, Melanie, Pons, Jean-Luc, Bourguet, William, Labesse, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956784/ https://www.ncbi.nlm.nih.gov/pubmed/31350558 http://dx.doi.org/10.1093/bioinformatics/btz538 |
Ejemplares similares
-
kinDOCK: a tool for comparative docking of protein kinase ligands
por: Martin, Laetitia, et al.
Publicado: (2006) -
@TOME-2: a new pipeline for comparative modeling of protein–ligand complexes
por: Pons, Jean-Luc, et al.
Publicado: (2009) -
In Silico Predictions of Endocrine Disruptors Properties
por: Schneider, Melanie, et al.
Publicado: (2019) -
Novel High Affinity Sigma-1 Receptor Ligands from Minimal Ensemble Docking-Based Virtual Screening
por: Dvorácskó, Szabolcs, et al.
Publicado: (2021) -
RosettaLigandEnsemble: A Small-Molecule Ensemble-Driven
Docking Approach
por: Fu, Darwin Yu, et al.
Publicado: (2018)