Cargando…
GMSimpute: a generalized two-step Lasso approach to impute missing values in label-free mass spectrum analysis
MOTIVATION: Missingness in label-free mass spectrometry is inherent to the technology. A computational approach to recover missing values in metabolomics and proteomics datasets is important. Most existing methods are designed under a particular assumption, either missing at random or under the dete...
Autores principales: | Li, Qian, Fisher, Kate, Meng, Wenjun, Fang, Bin, Welsh, Eric, Haura, Eric B, Koomen, John M, Eschrich, Steven A, Fridley, Brooke L, Chen, Y Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956786/ https://www.ncbi.nlm.nih.gov/pubmed/31199438 http://dx.doi.org/10.1093/bioinformatics/btz488 |
Ejemplares similares
-
Imputation methods for missing data for polygenic models
por: Fridley, Brooke, et al.
Publicado: (2003) -
Probability genotype imputation method and integrated weighted lasso for QTL identification
por: Demetrashvili, Nino, et al.
Publicado: (2013) -
Validation of prediction models based on lasso regression with multiply imputed data
por: Musoro, Jammbe Z, et al.
Publicado: (2014) -
Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer
por: Kim, Jae-Young, et al.
Publicado: (2016) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008)