Cargando…
Modelling cancer progression using Mutual Hazard Networks
MOTIVATION: Cancer progresses by accumulating genomic events, such as mutations and copy number alterations, whose chronological order is key to understanding the disease but difficult to observe. Instead, cancer progression models use co-occurrence patterns in cross-sectional data to infer epistati...
Autores principales: | Schill, Rudolf, Solbrig, Stefan, Wettig, Tilo, Spang, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956791/ https://www.ncbi.nlm.nih.gov/pubmed/31250881 http://dx.doi.org/10.1093/bioinformatics/btz513 |
Ejemplares similares
-
Low-rank tensor methods for Markov chains with applications to tumor progression models
por: Georg, Peter, et al.
Publicado: (2022) -
DTD: An R Package for Digital Tissue Deconvolution
por: Schön, Marian, et al.
Publicado: (2020) -
Mutually Exclusive Cellular Uptake of Combinatorial Supramolecular Copolymers
por: van Dun, Sam, et al.
Publicado: (2018) -
Weighted mutual information analysis substantially improves domain-based functional network models
por: Shim, Jung Eun, et al.
Publicado: (2016) -
Analyzing synergistic and non-synergistic interactions in signalling pathways using Boolean Nested Effect Models
por: Pirkl, Martin, et al.
Publicado: (2016)