Cargando…
CoCoScore: context-aware co-occurrence scoring for text mining applications using distant supervision
MOTIVATION: Information extraction by mining the scientific literature is key to uncovering relations between biomedical entities. Most existing approaches based on natural language processing extract relations from single sentence-level co-mentions, ignoring co-occurrence statistics over the whole...
Autores principales: | Junge, Alexander, Jensen, Lars Juhl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956794/ https://www.ncbi.nlm.nih.gov/pubmed/31199464 http://dx.doi.org/10.1093/bioinformatics/btz490 |
Ejemplares similares
-
Diseases 2.0: a weekly updated database of disease–gene associations from text mining and data integration
por: Grissa, Dhouha, et al.
Publicado: (2022) -
Contextualizing Genes by Using Text-Mined Co-Occurrence Features for Cancer Gene Panel Discovery
por: Chen, Hui-O, et al.
Publicado: (2021) -
A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts
por: Westergaard, David, et al.
Publicado: (2018) -
Interpretable time-aware and co-occurrence-aware network for medical prediction
por: Sun, Chenxi, et al.
Publicado: (2021) -
Placental pathology, neonatal birth weight, and Apgar score in acute and distant SARS-CoV-2 infection
por: Smithgall, Marie C., et al.
Publicado: (2022)