Cargando…
Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data
We consider the problem of minimizing a smooth convex objective function subject to the set of minima of another differentiable convex function. In order to solve this problem, we propose an algorithm which combines the gradient method with a penalization technique. Moreover, we insert in our algori...
Autores principales: | Boţ, Radu Ioan, Csetnek, Ernö Robert, Nimana, Nimit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956900/ https://www.ncbi.nlm.nih.gov/pubmed/31998412 http://dx.doi.org/10.1007/s11590-017-1158-1 |
Ejemplares similares
-
An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
por: Boţ, Radu Ioan, et al.
Publicado: (2020) -
The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints
por: Bitterlich, Sandy, et al.
Publicado: (2018) -
An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
por: Boţ, Radu Ioan, et al.
Publicado: (2022) -
A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities
por: Boţ, Radu Ioan, et al.
Publicado: (2018)