Cargando…
A computing platform for pairs-trading online implementation via a blended Kalman-HMM filtering approach
This paper addresses the problem of designing an efficient platform for pairs-trading implementation in real time. Capturing the stylised features of a spread process, i.e., the evolution of the differential between the returns from a pair of stocks, exhibiting a heavy-tailed mean-reverting process...
Autores principales: | Tenyakov, Anton, Mamon, Rogemar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956914/ https://www.ncbi.nlm.nih.gov/pubmed/31998599 http://dx.doi.org/10.1186/s40537-017-0106-3 |
Ejemplares similares
-
Implementation of Kalman Filtering with Spiking Neural Networks
por: Juárez-Lora, Alejandro, et al.
Publicado: (2022) -
Cross-architecture Kalman filter benchmarks on modern hardware platforms
por: Cámpora Pérez, D H, et al.
Publicado: (2018) -
Kalman Filter improvements using GPUs for online LHCb triggers
por: Mr. AGUILAR, Jimmy Mena
Publicado: (2015) -
Treatment of Extended Kalman Filter Implementations for the Gyroless Star Tracker
por: Critchley-Marrows, Joshua J. R., et al.
Publicado: (2022) -
Kalman filtering : theory and practice using MATLAB /
por: Grewal, Mohinder S.
Publicado: (2001)