Cargando…
Hadoop and PySpark for reproducibility and scalability of genomic sequencing studies
Modern genomic studies are rapidly growing in scale, and the analytical approaches used to analyze genomic data are increasing in complexity. Genomic data management poses logistic and computational challenges, and analyses are increasingly reliant on genomic annotation resources that create their o...
Autores principales: | WHEELER, NICHOLAS R., BENCHEK, PENELOPE, KUNKLE, BRIAN W., HAMILTON-NELSON, KARA L., WARFE, MIKE, FONDRAN, JEREMY R., HAINES, JONATHAN L., BUSH, WILLIAM S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956992/ https://www.ncbi.nlm.nih.gov/pubmed/31797624 |
Ejemplares similares
-
PySpark recipes: a problem-solution approach with PySpark2
por: Mishra, Raju Kumar
Publicado: (2018) -
Interactive Spark using PySpark
por: Bengfort, Benjamin
Publicado: (2016) -
Advanced Analytics with PySpark
por: Tandon, Akash, et al.
Publicado: (2022) -
PySpark SQL recipes: with HiveQL, Dataframe and Graphframes
por: Mishra, Raju Kumar, et al.
Publicado: (2019) -
Machine learning with PySpark: with natural language processing and recommender systems
por: Singh, Pramod
Publicado: (2019)