Cargando…

A Novel Technique for a Successful Closed Reduction of a Bosworth Fracture-Dislocation of the Ankle

The Bosworth fracture is defined as a bimalleolar fracture-dislocation of the ankle, with entrapment of the fibula behind the posterior tubercle of the distal tibia. In the current orthopedic literature, not only is this fracture pattern rare, but this type of fracture-dislocation has also been repo...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Juston, Michelin, Richard M, Jenkins, Ryne, Hwang, Minju, French, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957040/
https://www.ncbi.nlm.nih.gov/pubmed/31966945
http://dx.doi.org/10.7759/cureus.6632
Descripción
Sumario:The Bosworth fracture is defined as a bimalleolar fracture-dislocation of the ankle, with entrapment of the fibula behind the posterior tubercle of the distal tibia. In the current orthopedic literature, not only is this fracture pattern rare, but this type of fracture-dislocation has also been reported to be near impossible to close reduce, with the majority requiring early open reduction and internal fixation to prevent complications and poor clinical outcomes. Reported early complications include compartment syndrome and soft tissue complications from repeated closed reduction attempts. Complications associated with delayed operative intervention include post-traumatic adhesive capsulitis of the ankle and ankle stiffness. We present a case study of a 34-year-old male who sustained a Bosworth fracture-dislocation of the right ankle after a skateboarding accident. We describe a successful closed reduction performed in the emergency department, with a novel closed reduction technique. The patient tolerated the procedure well, with no complications. He was then scheduled for open reduction and internal fixation five days afterward, and upon post-operative follow-up, he recovered well with no complications. This technique focuses on reduction forces applied to the proximal fibular fragment, which is entrapped behind the posterolateral portion of the tibia. We believe that the key to successful reduction is applying an anterolateral/internal rotation force to this entrapped fragment. If successful, this fracture pattern may not require admission for compartment checks or early open reduction and internal fixation, thereby preventing complications and poor clinical outcomes. Our technique allows for a successful closed reduction of Bosworth fractures; however, further research exploring this reduction technique is warranted.