Cargando…

Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population

PURPOSE: Several lines of evidence support the fact that the presence of oxidative stress plays an important role in the pathophysiological mechanisms of schizophrenia (SCZ). The glutathione peroxidases (GPXs) and glutathione S-transferases (GSTs) are the major antioxidant enzymes. Polymorphic varia...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chao, Song, Sijia, Zhang, Junkai, Li, Xiao, Gao, Huijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957098/
https://www.ncbi.nlm.nih.gov/pubmed/32021204
http://dx.doi.org/10.2147/NDT.S236298
_version_ 1783487259120500736
author Liu, Chao
Song, Sijia
Zhang, Junkai
Li, Xiao
Gao, Huijie
author_facet Liu, Chao
Song, Sijia
Zhang, Junkai
Li, Xiao
Gao, Huijie
author_sort Liu, Chao
collection PubMed
description PURPOSE: Several lines of evidence support the fact that the presence of oxidative stress plays an important role in the pathophysiological mechanisms of schizophrenia (SCZ). The glutathione peroxidases (GPXs) and glutathione S-transferases (GSTs) are the major antioxidant enzymes. Polymorphic variants of GPX and GST can affect the antioxidant activities of their encoded enzymes. This study explored the possible associations of the GSTA1 and GPX3 gene polymorphisms and schizophrenia in Chinese Han population. METHODS: DNA from 648 healthy controls and 617 schizophrenic patients was genotyped for single-nucleotide polymorphisms (SNPs) rs3957357 in GSTA1 and rs736775 in GPX3 using a PCR-LDR genotyping assay. The χ(2) test compared differences in genetic distributions between the two groups in a case–control study. The generalized multifactor dimensionality reduction (GMDR) was used to explore the interaction between the GSTA1 gene and the GPX3 gene on the risk of SCZ. RESULTS: Significant differences in allelic and genotypic frequencies of GSTA1 rs3957357 were present between SCZ and control groups (GSTA1 rs3957357 χ(2)=6.172, P=0.046 by genotype, χ(2)=5.847, P=0.016, odds ratio=1.329, 95% confidence interval=1.055–1.674 by allele). No significant differences in allelic or genotypic frequencies of GPX3 rs736775 were detected between cases and controls (GPX3 rs736775: χ(2)=2.058, P=0.357 by genotype, χ(2)=1.853, P=0.173, odds ratio=1.131, 95% confidence interval=0.953–1.342 by allele). Moreover, the GMDR model showed that the interaction between GSTA1 rs3957357 and GPX3 rs736775 was associated significantly with SCZ risk, P=0.0107. CONCLUSION: Our results suggest that GSTA1 rs3957357 SNP has an effect on the risk of SCZ and the interaction between GSTA1 rs3957357and GPX3 rs736775 may affect the development of SCZ in Chinese Han population. However, these results should be validated by replication in different populations with large sample sizes.
format Online
Article
Text
id pubmed-6957098
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-69570982020-02-04 Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population Liu, Chao Song, Sijia Zhang, Junkai Li, Xiao Gao, Huijie Neuropsychiatr Dis Treat Original Research PURPOSE: Several lines of evidence support the fact that the presence of oxidative stress plays an important role in the pathophysiological mechanisms of schizophrenia (SCZ). The glutathione peroxidases (GPXs) and glutathione S-transferases (GSTs) are the major antioxidant enzymes. Polymorphic variants of GPX and GST can affect the antioxidant activities of their encoded enzymes. This study explored the possible associations of the GSTA1 and GPX3 gene polymorphisms and schizophrenia in Chinese Han population. METHODS: DNA from 648 healthy controls and 617 schizophrenic patients was genotyped for single-nucleotide polymorphisms (SNPs) rs3957357 in GSTA1 and rs736775 in GPX3 using a PCR-LDR genotyping assay. The χ(2) test compared differences in genetic distributions between the two groups in a case–control study. The generalized multifactor dimensionality reduction (GMDR) was used to explore the interaction between the GSTA1 gene and the GPX3 gene on the risk of SCZ. RESULTS: Significant differences in allelic and genotypic frequencies of GSTA1 rs3957357 were present between SCZ and control groups (GSTA1 rs3957357 χ(2)=6.172, P=0.046 by genotype, χ(2)=5.847, P=0.016, odds ratio=1.329, 95% confidence interval=1.055–1.674 by allele). No significant differences in allelic or genotypic frequencies of GPX3 rs736775 were detected between cases and controls (GPX3 rs736775: χ(2)=2.058, P=0.357 by genotype, χ(2)=1.853, P=0.173, odds ratio=1.131, 95% confidence interval=0.953–1.342 by allele). Moreover, the GMDR model showed that the interaction between GSTA1 rs3957357 and GPX3 rs736775 was associated significantly with SCZ risk, P=0.0107. CONCLUSION: Our results suggest that GSTA1 rs3957357 SNP has an effect on the risk of SCZ and the interaction between GSTA1 rs3957357and GPX3 rs736775 may affect the development of SCZ in Chinese Han population. However, these results should be validated by replication in different populations with large sample sizes. Dove 2020-01-09 /pmc/articles/PMC6957098/ /pubmed/32021204 http://dx.doi.org/10.2147/NDT.S236298 Text en © 2020 Liu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Liu, Chao
Song, Sijia
Zhang, Junkai
Li, Xiao
Gao, Huijie
Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title_full Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title_fullStr Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title_full_unstemmed Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title_short Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population
title_sort effects of gsta1 and gpx3 polymorphisms on the risk of schizophrenia in chinese han population
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957098/
https://www.ncbi.nlm.nih.gov/pubmed/32021204
http://dx.doi.org/10.2147/NDT.S236298
work_keys_str_mv AT liuchao effectsofgsta1andgpx3polymorphismsontheriskofschizophreniainchinesehanpopulation
AT songsijia effectsofgsta1andgpx3polymorphismsontheriskofschizophreniainchinesehanpopulation
AT zhangjunkai effectsofgsta1andgpx3polymorphismsontheriskofschizophreniainchinesehanpopulation
AT lixiao effectsofgsta1andgpx3polymorphismsontheriskofschizophreniainchinesehanpopulation
AT gaohuijie effectsofgsta1andgpx3polymorphismsontheriskofschizophreniainchinesehanpopulation