Cargando…
Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion
Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957344/ https://www.ncbi.nlm.nih.gov/pubmed/31931519 http://dx.doi.org/10.1371/journal.pone.0227608 |
_version_ | 1783487297085243392 |
---|---|
author | Janda, Tibor Lejmel, Magdalena Anna Molnár, Anna Borbála Majláth, Imre Pál, Magda Nguyen, Quang Trung Nguyen, Ngoc Tung Le, Van Nhan Szalai, Gabriella |
author_facet | Janda, Tibor Lejmel, Magdalena Anna Molnár, Anna Borbála Majláth, Imre Pál, Magda Nguyen, Quang Trung Nguyen, Ngoc Tung Le, Van Nhan Szalai, Gabriella |
author_sort | Janda, Tibor |
collection | PubMed |
description | Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present study the physiological and biochemical effects of different modes of application (soaking seeds prior sowing; spraying leaves with 0.5 mM NaSA) were compared at normal and moderately elevated temperatures (4 h; 35°C) in Brachypodium distachyon (L.) P. Beauv. plants. While soaking the seeds stimulated plant growth, spraying caused mild stress, as indicated by the chlorophyll-a fluorescence induction parameters and changes in certain protective compounds, such as glutathione, flavonoids or antioxidant enzymes. Elevated temperature also caused an increase in the glutathione-S-transferase activity, and this increase was more pronounced in plants pre-treated with NaSA. Both seed soaking or spraying with NaSA and exposure to heat treatment at 35°C reduced the abscisic acid levels in the leaves. In contrast to abscisic acid, the jasmonic acid level in the leaves were increased by both spraying and heat treatment. The present results suggest that different modes of application may induce different physiological processes, after which plants respond differently to heat treatment. Since these results were obtained with a model plants, further experiments are required to clarify how these changes occur in crop plants, especially in cereals. |
format | Online Article Text |
id | pubmed-6957344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69573442020-01-26 Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion Janda, Tibor Lejmel, Magdalena Anna Molnár, Anna Borbála Majláth, Imre Pál, Magda Nguyen, Quang Trung Nguyen, Ngoc Tung Le, Van Nhan Szalai, Gabriella PLoS One Research Article Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present study the physiological and biochemical effects of different modes of application (soaking seeds prior sowing; spraying leaves with 0.5 mM NaSA) were compared at normal and moderately elevated temperatures (4 h; 35°C) in Brachypodium distachyon (L.) P. Beauv. plants. While soaking the seeds stimulated plant growth, spraying caused mild stress, as indicated by the chlorophyll-a fluorescence induction parameters and changes in certain protective compounds, such as glutathione, flavonoids or antioxidant enzymes. Elevated temperature also caused an increase in the glutathione-S-transferase activity, and this increase was more pronounced in plants pre-treated with NaSA. Both seed soaking or spraying with NaSA and exposure to heat treatment at 35°C reduced the abscisic acid levels in the leaves. In contrast to abscisic acid, the jasmonic acid level in the leaves were increased by both spraying and heat treatment. The present results suggest that different modes of application may induce different physiological processes, after which plants respond differently to heat treatment. Since these results were obtained with a model plants, further experiments are required to clarify how these changes occur in crop plants, especially in cereals. Public Library of Science 2020-01-13 /pmc/articles/PMC6957344/ /pubmed/31931519 http://dx.doi.org/10.1371/journal.pone.0227608 Text en © 2020 Janda et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Janda, Tibor Lejmel, Magdalena Anna Molnár, Anna Borbála Majláth, Imre Pál, Magda Nguyen, Quang Trung Nguyen, Ngoc Tung Le, Van Nhan Szalai, Gabriella Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title | Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title_full | Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title_fullStr | Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title_full_unstemmed | Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title_short | Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion |
title_sort | interaction between elevated temperature and different types of na-salicylate treatment in brachypodium dystachion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957344/ https://www.ncbi.nlm.nih.gov/pubmed/31931519 http://dx.doi.org/10.1371/journal.pone.0227608 |
work_keys_str_mv | AT jandatibor interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT lejmelmagdalenaanna interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT molnarannaborbala interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT majlathimre interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT palmagda interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT nguyenquangtrung interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT nguyenngoctung interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT levannhan interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion AT szalaigabriella interactionbetweenelevatedtemperatureanddifferenttypesofnasalicylatetreatmentinbrachypodiumdystachion |