Cargando…

Method for the facile transformation of marine purple photosynthetic bacteria using chemically competent cells

Marine purple photosynthetic bacteria are ideal organisms for the production of useful materials at reduced costs and contributing to a sustainable society because they can utilize sunlight, seawater, and components of air, including carbon dioxide and nitrogen gases, for their growth. However, conj...

Descripción completa

Detalles Bibliográficos
Autores principales: Higuchi‐Takeuchi, Mieko, Morisaki, Kumiko, Numata, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957439/
https://www.ncbi.nlm.nih.gov/pubmed/31638342
http://dx.doi.org/10.1002/mbo3.953
Descripción
Sumario:Marine purple photosynthetic bacteria are ideal organisms for the production of useful materials at reduced costs and contributing to a sustainable society because they can utilize sunlight, seawater, and components of air, including carbon dioxide and nitrogen gases, for their growth. However, conjugation is the only applicable method for the transformation of marine purple photosynthetic bacteria so far. Here, we examined a calcium chloride‐mediated method for the transformation of marine purple photosynthetic bacteria. Plasmid DNAs containing the kanamycin resistance gene were successfully transferred into chemically competent cells of two strains of marine purple photosynthetic bacteria (Rhodovulum sulfidophilum and Roseospira marina). Heat shock treatment increased the transformation efficiency in R. sulfidophilum, whereas the addition of cell‐penetrating peptide did not improve it. We also found that prolonged incubation in agar plates containing kanamycin led to spontaneous mutation of the 16S rRNA, resulting in kanamycin resistance in R. marina. Thus, we developed an efficient and facile transformation method using chemically competent cells of marine purple photosynthetic bacteria with calcium chloride.