Cargando…
The Role of Meat Protein in Generation of Oxidative Stress and Pathophysiology of Metabolic Syndromes
Various processing methods have a great impact on the physiochemical and nutritional properties of meat that are of health concern. Hence, the postmortem processing of meat by different methods is likely to intensify the potential effects on protein oxidation. The influence of meat protein oxidation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957445/ https://www.ncbi.nlm.nih.gov/pubmed/31970326 http://dx.doi.org/10.5851/kosfa.2019.e96 |
Sumario: | Various processing methods have a great impact on the physiochemical and nutritional properties of meat that are of health concern. Hence, the postmortem processing of meat by different methods is likely to intensify the potential effects on protein oxidation. The influence of meat protein oxidation on the modulation of the systemic redox status and underlying mechanism is well known. However, the effects of processed meat proteins isolated from different sources on gut microbiota, oxidative stress biomarkers, and metabolomic markers associated with metabolic syndromes are of growing interest. The application of advanced methodological approaches based on OMICS, and mass spectrometric technologies has enabled to better understand the molecular basis of the effect of processed meat oxidation on human health and the aging process. Animal studies indicate the involvement of dietary proteins isolated from different sources on health disorders, which emphasizes the impact of processed meat protein on the richness of bacterial taxa such as (Mucispirillum, Oscillibacter), accompanied by increased expression of lipogenic genes. This review explores the most recent evidences on meat processing techniques, meat protein oxidation, underlying mechanisms, and their potential effects on nutritional value, gut microbiota composition and possible implications on human health. |
---|