Cargando…

Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer

Ferroptosis is a new form of regulated cell death driven by iron-dependent lipid peroxidation. Glutaminolysis and tricarboxylic acid cycle are involved in ferroptosis, but the underlying metabolic process remains unclear. We examined the role of dihydrolipoamide dehydrogenase (DLD) in ferroptosis in...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Daiha, Lee, Jaewang, You, Ji Hyeon, Kim, Doyeon, Roh, Jong-Lyel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957841/
https://www.ncbi.nlm.nih.gov/pubmed/31931284
http://dx.doi.org/10.1016/j.redox.2019.101418
_version_ 1783487363320643584
author Shin, Daiha
Lee, Jaewang
You, Ji Hyeon
Kim, Doyeon
Roh, Jong-Lyel
author_facet Shin, Daiha
Lee, Jaewang
You, Ji Hyeon
Kim, Doyeon
Roh, Jong-Lyel
author_sort Shin, Daiha
collection PubMed
description Ferroptosis is a new form of regulated cell death driven by iron-dependent lipid peroxidation. Glutaminolysis and tricarboxylic acid cycle are involved in ferroptosis, but the underlying metabolic process remains unclear. We examined the role of dihydrolipoamide dehydrogenase (DLD) in ferroptosis induction in head and neck cancer (HNC). The effects of cystine deprivation or sulfasalazine treatment and of DLD gene silencing/overexpression were tested on HNC cell lines and mouse tumor xenograft models. These effects were analyzed with regard to cell death, lipid reactive oxygen species (ROS) and mitochondrial iron production, mitochondrial membrane potential, mRNA/protein expression, and α-ketoglutarate dehydrogenase (KGDH)/succinate/aconitase activities. Cystine deprivation induced ferroptosis via glutaminolysis. Cystine deprivation or import inhibition using sulfasalazine induced cancer cell death and increased lipid ROS and mitochondrial iron levels, which had been significantly decreased by short-interfering RNA (siRNA) or short hairpin RNA (shRNA) targeting DLD (P < 0.01) but not by dihydrolipoyl succinyltransferase. The same results were noted in an in vivo mouse model transplanted with vector or shDLD-transduced HN9 cells. After cystine deprivation or sulfasalazine treatment, mitochondrial membrane potential, mitochondrial free iron level, KGDH activity, and succinate content significantly increased (P < 0.001), which had been blocked by DLD siRNA or shRNA and were consequently rescued by resistant DLD cDNA. Cystine deprivation caused iron starvation response and mitochondrial iron accumulation for Fenton reaction and ferroptosis. Our data suggest a close association of DLD with cystine deprivation- or import inhibition-induced ferroptosis.
format Online
Article
Text
id pubmed-6957841
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69578412020-01-17 Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer Shin, Daiha Lee, Jaewang You, Ji Hyeon Kim, Doyeon Roh, Jong-Lyel Redox Biol Research Paper Ferroptosis is a new form of regulated cell death driven by iron-dependent lipid peroxidation. Glutaminolysis and tricarboxylic acid cycle are involved in ferroptosis, but the underlying metabolic process remains unclear. We examined the role of dihydrolipoamide dehydrogenase (DLD) in ferroptosis induction in head and neck cancer (HNC). The effects of cystine deprivation or sulfasalazine treatment and of DLD gene silencing/overexpression were tested on HNC cell lines and mouse tumor xenograft models. These effects were analyzed with regard to cell death, lipid reactive oxygen species (ROS) and mitochondrial iron production, mitochondrial membrane potential, mRNA/protein expression, and α-ketoglutarate dehydrogenase (KGDH)/succinate/aconitase activities. Cystine deprivation induced ferroptosis via glutaminolysis. Cystine deprivation or import inhibition using sulfasalazine induced cancer cell death and increased lipid ROS and mitochondrial iron levels, which had been significantly decreased by short-interfering RNA (siRNA) or short hairpin RNA (shRNA) targeting DLD (P < 0.01) but not by dihydrolipoyl succinyltransferase. The same results were noted in an in vivo mouse model transplanted with vector or shDLD-transduced HN9 cells. After cystine deprivation or sulfasalazine treatment, mitochondrial membrane potential, mitochondrial free iron level, KGDH activity, and succinate content significantly increased (P < 0.001), which had been blocked by DLD siRNA or shRNA and were consequently rescued by resistant DLD cDNA. Cystine deprivation caused iron starvation response and mitochondrial iron accumulation for Fenton reaction and ferroptosis. Our data suggest a close association of DLD with cystine deprivation- or import inhibition-induced ferroptosis. Elsevier 2020-01-07 /pmc/articles/PMC6957841/ /pubmed/31931284 http://dx.doi.org/10.1016/j.redox.2019.101418 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Shin, Daiha
Lee, Jaewang
You, Ji Hyeon
Kim, Doyeon
Roh, Jong-Lyel
Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title_full Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title_fullStr Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title_full_unstemmed Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title_short Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
title_sort dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957841/
https://www.ncbi.nlm.nih.gov/pubmed/31931284
http://dx.doi.org/10.1016/j.redox.2019.101418
work_keys_str_mv AT shindaiha dihydrolipoamidedehydrogenaseregulatescystinedeprivationinducedferroptosisinheadandneckcancer
AT leejaewang dihydrolipoamidedehydrogenaseregulatescystinedeprivationinducedferroptosisinheadandneckcancer
AT youjihyeon dihydrolipoamidedehydrogenaseregulatescystinedeprivationinducedferroptosisinheadandneckcancer
AT kimdoyeon dihydrolipoamidedehydrogenaseregulatescystinedeprivationinducedferroptosisinheadandneckcancer
AT rohjonglyel dihydrolipoamidedehydrogenaseregulatescystinedeprivationinducedferroptosisinheadandneckcancer