Cargando…

GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats

PURPOSE: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. METHODS: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11...

Descripción completa

Detalles Bibliográficos
Autores principales: Bin, Zhou, Yanli, Yu, Zhen, Qiu, Qingtao, Meng, Zhongyuan, Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958563/
https://www.ncbi.nlm.nih.gov/pubmed/31939595
http://dx.doi.org/10.1590/s0102-865020190110000006
Descripción
Sumario:PURPOSE: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. METHODS: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H(2)O(2)) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. RESULTS: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H(2)O(2) and 3-MA. CONCLUSION: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.