Cargando…

An evaluation of the Zambia influenza sentinel surveillance system, 2011–2017

BACKGROUND: Over the past decade, influenza surveillance has been established in several African countries including Zambia. However, information on the on data quality and reliability of established influenza surveillance systems in Africa are limited. Such information would enable countries to ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Simusika, Paul, Tempia, Stefano, Chentulo, Edward, Polansky, Lauren, Mazaba, Mazyanga Lucy, Ndumba, Idah, Mbewe, Quinn K., Monze, Mwaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958603/
https://www.ncbi.nlm.nih.gov/pubmed/31931793
http://dx.doi.org/10.1186/s12913-019-4884-5
Descripción
Sumario:BACKGROUND: Over the past decade, influenza surveillance has been established in several African countries including Zambia. However, information on the on data quality and reliability of established influenza surveillance systems in Africa are limited. Such information would enable countries to assess the performance of their surveillance systems, identify shortfalls for improvement and provide evidence of data reliability for policy making and public health interventions. METHODS: We used the Centers for Disease Control and Prevention guidelines to evaluate the performance of the influenza surveillance system (ISS) in Zambia during 2011–2017 using 9 attributes: (i) data quality and completeness, (ii) timeliness, (iii) representativeness, (iv) flexibility, (v) simplicity, (vi) acceptability, (vii) stability, (viii) utility, and (ix) sustainability. Each attribute was evaluated using pre-defined indicators. For each indicator we obtained the proportion (expressed as percentage) of the outcome of interest over the total. A scale from 1 to 3 was used to provide a score for each attribute as follows: < 60% (as obtained in the calculation above) scored 1 (weak performance); 60–79% scored 2 (moderate performance); ≥80% scored 3 (good performance). An overall score for each attribute and the ISS was obtained by averaging the scores of all evaluated attributes. RESULTS: The overall mean score for the ISS in Zambia was 2.6. Key strengths of the system were the quality of data generated (score: 2.9), its flexibility (score: 3.0) especially to monitor viral pathogens other than influenza viruses, its simplicity (score: 2.8), acceptability (score: 3.0) and stability (score: 2.6) over the review period and its relatively low cost ($310,000 per annum). Identified weaknesses related mainly to geographic representativeness (score: 2.0), timeliness (score: 2.5), especially in shipment of samples from remote sites, and sustainability (score: 1.0) in the absence of external funds. CONCLUSIONS: The system performed moderately well in our evaluation. Key improvements would include improvements in the timeliness of samples shipments and geographical coverage. However, these improvements would result in increased cost and logistical complexity. The ISSS in Zambia is largely reliant on external funds and the acceptability of maintaining the surveillance system through national funds would require evaluation.