Cargando…
A pipeline to create predictive functional networks: application to the tumor progression of hepatocellular carcinoma
BACKGROUND: Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well...
Autores principales: | Folschette, Maxime, Legagneux, Vincent, Poret, Arnaud, Chebouba, Lokmane, Guziolowski, Carito, Théret, Nathalie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958715/ https://www.ncbi.nlm.nih.gov/pubmed/31937236 http://dx.doi.org/10.1186/s12859-019-3316-1 |
Ejemplares similares
-
Discriminate the response of Acute Myeloid Leukemia patients to treatment by using proteomics data and Answer Set Programming
por: Chebouba, Lokmane, et al.
Publicado: (2018) -
Therapeutic target discovery using Boolean network attractors: improvements of kali
por: Poret, Arnaud, et al.
Publicado: (2018) -
ADAM and ADAMTS Proteins, New Players in the Regulation of Hepatocellular Carcinoma Microenvironment
por: Théret, Nathalie, et al.
Publicado: (2021) -
Large-scale regulatory and signaling network assembly through linked open data
por: Lefebvre, M, et al.
Publicado: (2021) -
BioQuali Cytoscape plugin: analysing the global consistency of regulatory networks
por: Guziolowski, Carito, et al.
Publicado: (2009)