Cargando…
A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer
Aims: Molecular heterogeneity of breast cancer results in variation in morphology, metastatic potential and response to therapy. We previously showed that breast cancer cell line sub-groups obtained by a clustering approach using highly variable genes overlapped almost completely with sub-groups gen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959010/ https://www.ncbi.nlm.nih.gov/pubmed/31949498 http://dx.doi.org/10.7150/jca.34649 |
_version_ | 1783487514482311168 |
---|---|
author | Akbar, Muhammad Waqas Isbilen, Murat Belder, Nevin Canli, Secil Demirkol Kucukkaraduman, Baris Turk, Can Sahin, Ozgur Gure, Ali Osmay |
author_facet | Akbar, Muhammad Waqas Isbilen, Murat Belder, Nevin Canli, Secil Demirkol Kucukkaraduman, Baris Turk, Can Sahin, Ozgur Gure, Ali Osmay |
author_sort | Akbar, Muhammad Waqas |
collection | PubMed |
description | Aims: Molecular heterogeneity of breast cancer results in variation in morphology, metastatic potential and response to therapy. We previously showed that breast cancer cell line sub-groups obtained by a clustering approach using highly variable genes overlapped almost completely with sub-groups generated by a drug cytotoxicity-profile based approach. Two distinct cell populations thus identified were CSC(cancer stem cell)-like and non-CSC-like. In this study we asked whether an mRNA based gene signature identifying these two cell types would explain variation in stemness, EMT, drug sensitivity, and prognosis in silico and in vitro. Main methods: In silico analyses were performed using publicly available cell line and patient tumor datasets. In vitro analyses of phenotypic plasticity and drug responsiveness were obtained using human breast cancer cell lines. Key findings: We find a novel gene list (CNCL) that can generate both categorical and continuous variables corresponding to the stemness/EMT (epithelial to mesenchymal transition) state of tumors. We are presenting a novel robust gene signature that unites previous observations related either to EMT or stemness in breast cancer. We show in silico, that this signature perfectly predicts behavior of tumor cells tested in vitro, and can reflect tumor plasticity. We thus demonstrate for the first time, that breast cancer subtypes are sensitive to either Lapatinib or Midostaurin. The same gene list is not capable of predicting prognosis in most cohorts, except for one that includes patients receiving neo-adjuvant taxene therapy. Significance: CNCL is a robust gene list that can identify both stemness and the EMT state of cell lines and tumors. It can be used to trace tumor cells during the course of phenotypic changes they undergo, that result in altered responses to therapeutic agents. The fact that such a list cannot be used to identify prognosis in most patient cohorts suggests that presence of factors other than stemness and EMT affect mortality. |
format | Online Article Text |
id | pubmed-6959010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-69590102020-01-16 A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer Akbar, Muhammad Waqas Isbilen, Murat Belder, Nevin Canli, Secil Demirkol Kucukkaraduman, Baris Turk, Can Sahin, Ozgur Gure, Ali Osmay J Cancer Research Paper Aims: Molecular heterogeneity of breast cancer results in variation in morphology, metastatic potential and response to therapy. We previously showed that breast cancer cell line sub-groups obtained by a clustering approach using highly variable genes overlapped almost completely with sub-groups generated by a drug cytotoxicity-profile based approach. Two distinct cell populations thus identified were CSC(cancer stem cell)-like and non-CSC-like. In this study we asked whether an mRNA based gene signature identifying these two cell types would explain variation in stemness, EMT, drug sensitivity, and prognosis in silico and in vitro. Main methods: In silico analyses were performed using publicly available cell line and patient tumor datasets. In vitro analyses of phenotypic plasticity and drug responsiveness were obtained using human breast cancer cell lines. Key findings: We find a novel gene list (CNCL) that can generate both categorical and continuous variables corresponding to the stemness/EMT (epithelial to mesenchymal transition) state of tumors. We are presenting a novel robust gene signature that unites previous observations related either to EMT or stemness in breast cancer. We show in silico, that this signature perfectly predicts behavior of tumor cells tested in vitro, and can reflect tumor plasticity. We thus demonstrate for the first time, that breast cancer subtypes are sensitive to either Lapatinib or Midostaurin. The same gene list is not capable of predicting prognosis in most cohorts, except for one that includes patients receiving neo-adjuvant taxene therapy. Significance: CNCL is a robust gene list that can identify both stemness and the EMT state of cell lines and tumors. It can be used to trace tumor cells during the course of phenotypic changes they undergo, that result in altered responses to therapeutic agents. The fact that such a list cannot be used to identify prognosis in most patient cohorts suggests that presence of factors other than stemness and EMT affect mortality. Ivyspring International Publisher 2020-01-01 /pmc/articles/PMC6959010/ /pubmed/31949498 http://dx.doi.org/10.7150/jca.34649 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Akbar, Muhammad Waqas Isbilen, Murat Belder, Nevin Canli, Secil Demirkol Kucukkaraduman, Baris Turk, Can Sahin, Ozgur Gure, Ali Osmay A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title | A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title_full | A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title_fullStr | A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title_full_unstemmed | A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title_short | A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer |
title_sort | stemness and emt based gene expression signature identifies phenotypic plasticity and is a predictive but not prognostic biomarker for breast cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959010/ https://www.ncbi.nlm.nih.gov/pubmed/31949498 http://dx.doi.org/10.7150/jca.34649 |
work_keys_str_mv | AT akbarmuhammadwaqas astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT isbilenmurat astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT beldernevin astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT canlisecildemirkol astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT kucukkaradumanbaris astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT turkcan astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT sahinozgur astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT gurealiosmay astemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT akbarmuhammadwaqas stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT isbilenmurat stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT beldernevin stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT canlisecildemirkol stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT kucukkaradumanbaris stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT turkcan stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT sahinozgur stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer AT gurealiosmay stemnessandemtbasedgeneexpressionsignatureidentifiesphenotypicplasticityandisapredictivebutnotprognosticbiomarkerforbreastcancer |