Cargando…

Nedaplatin reduces multidrug resistance of non-small cell lung cancer by downregulating the expression of long non-coding RNA MVIH

Cisplatin-based chemotherapy is the standard treatment for non-small cell lung cancer (NSCLC). However, drug resistance emergences after treatment. Long non-coding RNA microvascular invasion in hepatic cancer (MVIH) plays an important role in drug resistance in a variety of cancers. This study inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Jing, Changwen, Wang, Zhuo, Lou, Rui, Wu, Jianzhong, Shi, Chen, Chen, Dan, Ma, Rong, Liu, Siwen, Cao, Haixia, Feng, Jifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959054/
https://www.ncbi.nlm.nih.gov/pubmed/31942179
http://dx.doi.org/10.7150/jca.35792
Descripción
Sumario:Cisplatin-based chemotherapy is the standard treatment for non-small cell lung cancer (NSCLC). However, drug resistance emergences after treatment. Long non-coding RNA microvascular invasion in hepatic cancer (MVIH) plays an important role in drug resistance in a variety of cancers. This study investigates the role of nedaplatin on multidrug resistance in NSCLC and its relationship with MVIH. Lung cancer A549 and H1650 cells were treated with cisplatin to obtain multidrug-resistant A549/DDP and H1650/ DDP cells. A549/DDP and H1650/ DDP cells were treated with nedaplatin, MVIH siRNA and siRNA NC. It was found that both MVIH siRNA and nedaplatin significantly reduce the mRNA expression of MVIH in A549/DDP and H1650/ DDP cells. MTT assay showed that the proliferation of MDR cells was significantly higher than that of other cells. Nedaplatin and MVIH siRNA significantly inhibit the proliferation of A549 and H1650 cells. The results of colony formation assay were consistence with MTT results. Nedaplatin and MVIH siRNA significantly reduced colony formation in MDR cells. Flow cytometry showed that NDP and MVIH siRNA significantly decrease the proportion of cells in G0/G1 and increase the proportion of cells in S phase compared with untreated and MDR cells. The apoptotic rate of MDR cells was significantly lower than that of other cells, while the apoptosis rate of cells in NDP and MVIH siRNA group was significantly higher than that of the other three groups of cells. Wound healing assay and Transwell chamber experiments confirmed that both NDP and MVIH siRNA significantly reduced the migration and invasion abilities of MDR cells. The expression of E-cadherin in MDR cells was significantly lower than that in untreated cells, and the expression of N-cad, α-SMA and Vimentin significantly increased in the MDR cells. NPD and MVIH siRNA reverse the EMT process. In conclusion, LncRNA MVIH is upregulated in drug resistant NSCLC cells. Nedaplatin can reduce the expression of MVIH and reverse EMT process, thus reversing the drug resistance of cisplatin in non-small cell lung cancer cells.