Cargando…
A machine learning based prediction system for the Indian Ocean Dipole
The Indian Ocean Dipole (IOD) is a mode of climate variability observed in the Indian Ocean sea surface temperature anomalies with one pole off Sumatra and the other pole near East Africa. An IOD event starts sometime in May-June, peaks in September-October and ends in November. Through atmospheric...
Autores principales: | Ratnam, J. V., Dijkstra, H. A., Behera, Swadhin K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959259/ https://www.ncbi.nlm.nih.gov/pubmed/31937896 http://dx.doi.org/10.1038/s41598-019-57162-8 |
Ejemplares similares
-
Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole
por: Ling, Fenghua, et al.
Publicado: (2022) -
Long-lead Prediction of ENSO Modoki Index using Machine Learning algorithms
por: Pal, Manali, et al.
Publicado: (2020) -
Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD
por: Behera, Swadhin K., et al.
Publicado: (2018) -
Predicting maximum temperatures over India 10-days ahead using machine learning models
por: Ratnam, J. V., et al.
Publicado: (2023) -
Anatomy of Indian heatwaves
por: Ratnam, J. V., et al.
Publicado: (2016)