Cargando…
Early Recognition of Burn- and Trauma-Related Acute Kidney Injury: A Pilot Comparison of Machine Learning Techniques
Severely burned and non-burned trauma patients are at risk for acute kidney injury (AKI). The study objective was to assess the theoretical performance of artificial intelligence (AI)/machine learning (ML) algorithms to augment AKI recognition using the novel biomarker, neutrophil gelatinase associa...
Autores principales: | Rashidi, Hooman H., Sen, Soman, Palmieri, Tina L., Blackmon, Thomas, Wajda, Jeffery, Tran, Nam K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959341/ https://www.ncbi.nlm.nih.gov/pubmed/31937795 http://dx.doi.org/10.1038/s41598-019-57083-6 |
Ejemplares similares
-
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
por: Tran, Nam K., et al.
Publicado: (2020) -
Sodium variability is associated with increased mortality in severe burn injury
por: Sen, Soman, et al.
Publicado: (2017) -
303 Burn Rehabilitation Training for the Pediatric Burn Critical Care RN
por: Bartlett, Robyn, et al.
Publicado: (2023) -
Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data
por: Rashidi, Hooman H., et al.
Publicado: (2022) -
521 Maintaining Central Line Patency in Burned Children
por: Arredondo, Olivia, et al.
Publicado: (2022)