Cargando…

Extreme genetic signatures of local adaptation during Lotus japonicus colonization of Japan

Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus ove...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Niraj, Wakabayashi, Tomomi, Kawamura, Yasuko, Skovbjerg, Cathrine Kiel, Wang, Ming-Zhuo, Mustamin, Yusdar, Isomura, Yoshiko, Gupta, Vikas, Jin, Haojie, Mun, Terry, Sandal, Niels, Azuma, Fuyuki, Fukai, Eigo, Seren, Ümit, Kusakabe, Shohei, Kikuchi, Yuki, Nitanda, Shogo, Kumaki, Takashi, Hashiguchi, Masatsugu, Tanaka, Hidenori, Hayashi, Atsushi, Sønderkær, Mads, Nielsen, Kaare Lehmann, Schneeberger, Korbinian, Vilhjalmsson, Bjarni, Akashi, Ryo, Stougaard, Jens, Sato, Shusei, Schierup, Mikkel Heide, Andersen, Stig Uggerhøj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959357/
https://www.ncbi.nlm.nih.gov/pubmed/31937774
http://dx.doi.org/10.1038/s41467-019-14213-y
Descripción
Sumario:Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus over the past ~20,000 years. Based on patterns of genomic variation, we infer the details of the colonization process where L. japonicus gradually spread from subtropical conditions to much colder climates in northern Japan. We identify genomic regions with extreme genetic differentiation between northern and southern subpopulations and perform population structure-corrected association mapping of phenotypic traits measured in a common garden. Comparing the results of these analyses, we find that signatures of extreme subpopulation differentiation overlap strongly with phenotype association signals for overwintering and flowering time traits. Our results provide evidence that these traits were direct targets of selection during colonization and point to associated candidate genes.