Cargando…

Ophiopogonin D' induces RIPK1-dependent necroptosis in androgen-dependent LNCaP prostate cancer cells

Ophiopogonin D' (OPD') is a natural compound extracted from Ophiopogon japonicus, which is a plant used in traditional Chinese medicine. Our previous study has indicated that OPD' exhibits antitumor activity against androgen-independent prostate cancer (PCa), but the effects and the u...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zongliang, Wu, Changpeng, Zhu, Mingxing, Song, Wei, Wang, He, Wang, Jiajia, Guo, Jing, Li, Na, Liu, Jie, Li, Yanwu, Xu, Hongxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959467/
https://www.ncbi.nlm.nih.gov/pubmed/31894265
http://dx.doi.org/10.3892/ijo.2019.4945
Descripción
Sumario:Ophiopogonin D' (OPD') is a natural compound extracted from Ophiopogon japonicus, which is a plant used in traditional Chinese medicine. Our previous study has indicated that OPD' exhibits antitumor activity against androgen-independent prostate cancer (PCa), but the effects and the underlying molecular mechanism of action of OPD' in androgen-dependent PCa were unclear. In the present study, OPD' induced significant necroptosis in androgen-dependent LNCaP cancer cells by activating receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Exposure to OPD' also increased Fas ligand (FasL)-dependent RIPK1 protein expression. The OPD'-induced necroptosis was inhibited by a RIPK1 inhibitor necrostatin-1, further supporting a role for RIPK1 in the effects of OPD´. The antitumor effects of OPD' were also inhibited by a mixed lineage kinase domain-like protein (MLKL) inhibitor necrosulfonamide. Following treatment with inhibitors of RIPK1 and MLKL, the effects of OPD' on LNCaP cells were inhibited in an additive manner. In addition, co-immunoprecipitation assays demonstrated that OPD' induced RIPK3 upregulation, leading to the assembly of a RIPK3-MLKL complex, which was independent of RIPK1. Furthermore, OPD' increased the expression of Fas-associated death domain, which is required to induce necroptosis in LNCaP cells. OPD' also regulated the expression levels of FasL, androgen receptor and prostate-specific antigen in a RIPK1-dependent manner. These results suggested that OPD' may exhibit potential as an anti-PCa agent by inducing RIPK1- and MLKL-dependent necroptosis.