Cargando…
Modelling zero-truncated overdispersed antenatal health care count data of women in Bangladesh
Overdispersion in count data analysis is very common in many practical fields of health sciences. Ignorance of the presence of overdispersion in such data analysis may cause misleading inferences and thus lead to incorrect interpretations of the results. Researchers should account for the consequenc...
Autores principales: | Hossain, Zakir, Akter, Rozina, Sultana, Nasrin, Kabir, Enamul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959570/ https://www.ncbi.nlm.nih.gov/pubmed/31935274 http://dx.doi.org/10.1371/journal.pone.0227824 |
Ejemplares similares
-
A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data
por: Bertoli, Wesley, et al.
Publicado: (2021) -
Modeling zero inflation and overdispersion in provisional Covid-19 death counts
por: Effiong, Andem, et al.
Publicado: (2022) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
Spatial Scan Statistics for Models with Excess Zeros and Overdispersion
por: de Lima, Max Sousa, et al.
Publicado: (2013) -
Determinants of children ever born among ever-married women in Bangladesh: evidence from the Demographic and Health Survey 2017–2018
por: Rahman, Atikur, et al.
Publicado: (2022)