Cargando…
Predicting Brain Age of Healthy Adults Based on Structural MRI Parcellation Using Convolutional Neural Networks
Structural magnetic resonance imaging (MRI) studies have demonstrated that the brain undergoes age-related neuroanatomical changes not only regionally but also on the network level during the normal development and aging process. In recent years, many studies have focused on estimating age using str...
Autores principales: | Jiang, Huiting, Lu, Na, Chen, Kewei, Yao, Li, Li, Ke, Zhang, Jiacai, Guo, Xiaojuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960113/ https://www.ncbi.nlm.nih.gov/pubmed/31969858 http://dx.doi.org/10.3389/fneur.2019.01346 |
Ejemplares similares
-
Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury
por: De Feo, Riccardo, et al.
Publicado: (2022) -
Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks
por: Guo, Xiaojuan, et al.
Publicado: (2014) -
Structural Brain Network Changes across the Adult Lifespan
por: Liu, Ke, et al.
Publicado: (2017) -
Convolutional Neural Networks for Direct Inference of Pharmacokinetic Parameters: Application to Stroke Dynamic Contrast-Enhanced MRI
por: Ulas, Cagdas, et al.
Publicado: (2019) -
The value of convolutional neural networks-based deep learning model in differential diagnosis of space-occupying brain diseases
por: Miao, Xiuling, et al.
Publicado: (2023)