Cargando…
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperati...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960329/ https://www.ncbi.nlm.nih.gov/pubmed/31907460 http://dx.doi.org/10.1038/s41591-019-0715-9 |
_version_ | 1783487768881528832 |
---|---|
author | Hollon, Todd C. Pandian, Balaji Adapa, Arjun R. Urias, Esteban Save, Akshay V. Khalsa, Siri Sahib S. Eichberg, Daniel G. D’Amico, Ra S. Farooq, Zia U. Lewis, Spencer Petridis, Petros D. Marie, Tamara Shah, Ashish H. Garton, Hugh J.L. Maher, Cormac O. Heth, Jason A. McKean, Erin L. Sullivan, Stephen E. Hervey-Jumper, Shawn L. Patil, Parag G. Thompson, B. Gregory Sagher, Oren McKhann, Guy M. Komotar, Ricardo J. Ivan, Michael E. Snuderl, Matija Otten, Marc L. Johnson, Timothy D. Sisti, Michael B. Bruce, Jeffrey N. Muraszko, Karin M. Trautman, Jay Freudiger, Christian W. Canoll, Peter Lee, Honglak Camelo-Piragua, Sandra Orringer, Daniel A. |
author_facet | Hollon, Todd C. Pandian, Balaji Adapa, Arjun R. Urias, Esteban Save, Akshay V. Khalsa, Siri Sahib S. Eichberg, Daniel G. D’Amico, Ra S. Farooq, Zia U. Lewis, Spencer Petridis, Petros D. Marie, Tamara Shah, Ashish H. Garton, Hugh J.L. Maher, Cormac O. Heth, Jason A. McKean, Erin L. Sullivan, Stephen E. Hervey-Jumper, Shawn L. Patil, Parag G. Thompson, B. Gregory Sagher, Oren McKhann, Guy M. Komotar, Ricardo J. Ivan, Michael E. Snuderl, Matija Otten, Marc L. Johnson, Timothy D. Sisti, Michael B. Bruce, Jeffrey N. Muraszko, Karin M. Trautman, Jay Freudiger, Christian W. Canoll, Peter Lee, Honglak Camelo-Piragua, Sandra Orringer, Daniel A. |
author_sort | Hollon, Todd C. |
collection | PubMed |
description | Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce(4). Here, we report a parallel workflow that combines stimulated Raman histology (SRH)(5–7), a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20–30 minutes)(2). In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory. |
format | Online Article Text |
id | pubmed-6960329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-69603292020-07-06 Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks Hollon, Todd C. Pandian, Balaji Adapa, Arjun R. Urias, Esteban Save, Akshay V. Khalsa, Siri Sahib S. Eichberg, Daniel G. D’Amico, Ra S. Farooq, Zia U. Lewis, Spencer Petridis, Petros D. Marie, Tamara Shah, Ashish H. Garton, Hugh J.L. Maher, Cormac O. Heth, Jason A. McKean, Erin L. Sullivan, Stephen E. Hervey-Jumper, Shawn L. Patil, Parag G. Thompson, B. Gregory Sagher, Oren McKhann, Guy M. Komotar, Ricardo J. Ivan, Michael E. Snuderl, Matija Otten, Marc L. Johnson, Timothy D. Sisti, Michael B. Bruce, Jeffrey N. Muraszko, Karin M. Trautman, Jay Freudiger, Christian W. Canoll, Peter Lee, Honglak Camelo-Piragua, Sandra Orringer, Daniel A. Nat Med Article Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce(4). Here, we report a parallel workflow that combines stimulated Raman histology (SRH)(5–7), a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20–30 minutes)(2). In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory. 2020-01-06 2020-01 /pmc/articles/PMC6960329/ /pubmed/31907460 http://dx.doi.org/10.1038/s41591-019-0715-9 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Hollon, Todd C. Pandian, Balaji Adapa, Arjun R. Urias, Esteban Save, Akshay V. Khalsa, Siri Sahib S. Eichberg, Daniel G. D’Amico, Ra S. Farooq, Zia U. Lewis, Spencer Petridis, Petros D. Marie, Tamara Shah, Ashish H. Garton, Hugh J.L. Maher, Cormac O. Heth, Jason A. McKean, Erin L. Sullivan, Stephen E. Hervey-Jumper, Shawn L. Patil, Parag G. Thompson, B. Gregory Sagher, Oren McKhann, Guy M. Komotar, Ricardo J. Ivan, Michael E. Snuderl, Matija Otten, Marc L. Johnson, Timothy D. Sisti, Michael B. Bruce, Jeffrey N. Muraszko, Karin M. Trautman, Jay Freudiger, Christian W. Canoll, Peter Lee, Honglak Camelo-Piragua, Sandra Orringer, Daniel A. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title | Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title_full | Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title_fullStr | Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title_full_unstemmed | Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title_short | Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks |
title_sort | near real-time intraoperative brain tumor diagnosis using stimulated raman histology and deep neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960329/ https://www.ncbi.nlm.nih.gov/pubmed/31907460 http://dx.doi.org/10.1038/s41591-019-0715-9 |
work_keys_str_mv | AT hollontoddc nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT pandianbalaji nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT adapaarjunr nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT uriasesteban nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT saveakshayv nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT khalsasirisahibs nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT eichbergdanielg nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT damicoras nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT farooqziau nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT lewisspencer nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT petridispetrosd nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT marietamara nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT shahashishh nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT gartonhughjl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT mahercormaco nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT hethjasona nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT mckeanerinl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT sullivanstephene nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT herveyjumpershawnl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT patilparagg nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT thompsonbgregory nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT sagheroren nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT mckhannguym nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT komotarricardoj nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT ivanmichaele nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT snuderlmatija nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT ottenmarcl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT johnsontimothyd nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT sistimichaelb nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT brucejeffreyn nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT muraszkokarinm nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT trautmanjay nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT freudigerchristianw nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT canollpeter nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT leehonglak nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT camelopiraguasandra nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks AT orringerdaniela nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks |