Cargando…

Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks

Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperati...

Descripción completa

Detalles Bibliográficos
Autores principales: Hollon, Todd C., Pandian, Balaji, Adapa, Arjun R., Urias, Esteban, Save, Akshay V., Khalsa, Siri Sahib S., Eichberg, Daniel G., D’Amico, Ra S., Farooq, Zia U., Lewis, Spencer, Petridis, Petros D., Marie, Tamara, Shah, Ashish H., Garton, Hugh J.L., Maher, Cormac O., Heth, Jason A., McKean, Erin L., Sullivan, Stephen E., Hervey-Jumper, Shawn L., Patil, Parag G., Thompson, B. Gregory, Sagher, Oren, McKhann, Guy M., Komotar, Ricardo J., Ivan, Michael E., Snuderl, Matija, Otten, Marc L., Johnson, Timothy D., Sisti, Michael B., Bruce, Jeffrey N., Muraszko, Karin M., Trautman, Jay, Freudiger, Christian W., Canoll, Peter, Lee, Honglak, Camelo-Piragua, Sandra, Orringer, Daniel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960329/
https://www.ncbi.nlm.nih.gov/pubmed/31907460
http://dx.doi.org/10.1038/s41591-019-0715-9
_version_ 1783487768881528832
author Hollon, Todd C.
Pandian, Balaji
Adapa, Arjun R.
Urias, Esteban
Save, Akshay V.
Khalsa, Siri Sahib S.
Eichberg, Daniel G.
D’Amico, Ra S.
Farooq, Zia U.
Lewis, Spencer
Petridis, Petros D.
Marie, Tamara
Shah, Ashish H.
Garton, Hugh J.L.
Maher, Cormac O.
Heth, Jason A.
McKean, Erin L.
Sullivan, Stephen E.
Hervey-Jumper, Shawn L.
Patil, Parag G.
Thompson, B. Gregory
Sagher, Oren
McKhann, Guy M.
Komotar, Ricardo J.
Ivan, Michael E.
Snuderl, Matija
Otten, Marc L.
Johnson, Timothy D.
Sisti, Michael B.
Bruce, Jeffrey N.
Muraszko, Karin M.
Trautman, Jay
Freudiger, Christian W.
Canoll, Peter
Lee, Honglak
Camelo-Piragua, Sandra
Orringer, Daniel A.
author_facet Hollon, Todd C.
Pandian, Balaji
Adapa, Arjun R.
Urias, Esteban
Save, Akshay V.
Khalsa, Siri Sahib S.
Eichberg, Daniel G.
D’Amico, Ra S.
Farooq, Zia U.
Lewis, Spencer
Petridis, Petros D.
Marie, Tamara
Shah, Ashish H.
Garton, Hugh J.L.
Maher, Cormac O.
Heth, Jason A.
McKean, Erin L.
Sullivan, Stephen E.
Hervey-Jumper, Shawn L.
Patil, Parag G.
Thompson, B. Gregory
Sagher, Oren
McKhann, Guy M.
Komotar, Ricardo J.
Ivan, Michael E.
Snuderl, Matija
Otten, Marc L.
Johnson, Timothy D.
Sisti, Michael B.
Bruce, Jeffrey N.
Muraszko, Karin M.
Trautman, Jay
Freudiger, Christian W.
Canoll, Peter
Lee, Honglak
Camelo-Piragua, Sandra
Orringer, Daniel A.
author_sort Hollon, Todd C.
collection PubMed
description Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce(4). Here, we report a parallel workflow that combines stimulated Raman histology (SRH)(5–7), a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20–30 minutes)(2). In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory.
format Online
Article
Text
id pubmed-6960329
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-69603292020-07-06 Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks Hollon, Todd C. Pandian, Balaji Adapa, Arjun R. Urias, Esteban Save, Akshay V. Khalsa, Siri Sahib S. Eichberg, Daniel G. D’Amico, Ra S. Farooq, Zia U. Lewis, Spencer Petridis, Petros D. Marie, Tamara Shah, Ashish H. Garton, Hugh J.L. Maher, Cormac O. Heth, Jason A. McKean, Erin L. Sullivan, Stephen E. Hervey-Jumper, Shawn L. Patil, Parag G. Thompson, B. Gregory Sagher, Oren McKhann, Guy M. Komotar, Ricardo J. Ivan, Michael E. Snuderl, Matija Otten, Marc L. Johnson, Timothy D. Sisti, Michael B. Bruce, Jeffrey N. Muraszko, Karin M. Trautman, Jay Freudiger, Christian W. Canoll, Peter Lee, Honglak Camelo-Piragua, Sandra Orringer, Daniel A. Nat Med Article Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery(1). The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of processed tissue is time-, resource-, and labor-intensive(2,3). Moreover, interpretation of intraoperative histologic images is dependent on a contracting, unevenly distributed pathology workforce(4). Here, we report a parallel workflow that combines stimulated Raman histology (SRH)(5–7), a label-free optical imaging method, and deep convolutional neural networks (CNN) to predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20–30 minutes)(2). In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of recognizable histologic feature representations to classify the major histopathologic classes of brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is independent of a traditional pathology laboratory. 2020-01-06 2020-01 /pmc/articles/PMC6960329/ /pubmed/31907460 http://dx.doi.org/10.1038/s41591-019-0715-9 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Hollon, Todd C.
Pandian, Balaji
Adapa, Arjun R.
Urias, Esteban
Save, Akshay V.
Khalsa, Siri Sahib S.
Eichberg, Daniel G.
D’Amico, Ra S.
Farooq, Zia U.
Lewis, Spencer
Petridis, Petros D.
Marie, Tamara
Shah, Ashish H.
Garton, Hugh J.L.
Maher, Cormac O.
Heth, Jason A.
McKean, Erin L.
Sullivan, Stephen E.
Hervey-Jumper, Shawn L.
Patil, Parag G.
Thompson, B. Gregory
Sagher, Oren
McKhann, Guy M.
Komotar, Ricardo J.
Ivan, Michael E.
Snuderl, Matija
Otten, Marc L.
Johnson, Timothy D.
Sisti, Michael B.
Bruce, Jeffrey N.
Muraszko, Karin M.
Trautman, Jay
Freudiger, Christian W.
Canoll, Peter
Lee, Honglak
Camelo-Piragua, Sandra
Orringer, Daniel A.
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title_full Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title_fullStr Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title_full_unstemmed Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title_short Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
title_sort near real-time intraoperative brain tumor diagnosis using stimulated raman histology and deep neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960329/
https://www.ncbi.nlm.nih.gov/pubmed/31907460
http://dx.doi.org/10.1038/s41591-019-0715-9
work_keys_str_mv AT hollontoddc nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT pandianbalaji nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT adapaarjunr nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT uriasesteban nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT saveakshayv nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT khalsasirisahibs nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT eichbergdanielg nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT damicoras nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT farooqziau nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT lewisspencer nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT petridispetrosd nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT marietamara nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT shahashishh nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT gartonhughjl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT mahercormaco nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT hethjasona nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT mckeanerinl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT sullivanstephene nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT herveyjumpershawnl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT patilparagg nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT thompsonbgregory nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT sagheroren nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT mckhannguym nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT komotarricardoj nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT ivanmichaele nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT snuderlmatija nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT ottenmarcl nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT johnsontimothyd nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT sistimichaelb nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT brucejeffreyn nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT muraszkokarinm nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT trautmanjay nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT freudigerchristianw nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT canollpeter nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT leehonglak nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT camelopiraguasandra nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks
AT orringerdaniela nearrealtimeintraoperativebraintumordiagnosisusingstimulatedramanhistologyanddeepneuralnetworks