Cargando…
Waterfall Atrous Spatial Pooling Architecture for Efficient Semantic Segmentation
We propose a new efficient architecture for semantic segmentation, based on a “Waterfall” Atrous Spatial Pooling architecture, that achieves a considerable accuracy increase while decreasing the number of network parameters and memory footprint. The proposed Waterfall architecture leverages the effi...
Autores principales: | Artacho, Bruno, Savakis, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960670/ https://www.ncbi.nlm.nih.gov/pubmed/31817366 http://dx.doi.org/10.3390/s19245361 |
Ejemplares similares
-
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Sharma, Udit, et al.
Publicado: (2021) -
Micro-Expression-Based Emotion Recognition Using Waterfall Atrous Spatial Pyramid Pooling Networks
por: Stofa, Marzuraikah Mohd, et al.
Publicado: (2022) -
Fast semantic segmentation method for machine vision inspection based on a fewer-parameters atrous convolution neural network
por: Huang, Jian, et al.
Publicado: (2021) -
Atrous Convolutions and Residual GRU Based Architecture for Matching Power Demand with Supply
por: Khan, Samee Ullah, et al.
Publicado: (2021) -
PRAPNet: A Parallel Residual Atrous Pyramid Network for Polyp Segmentation
por: Han, Jubao, et al.
Publicado: (2022)