Cargando…
Finite-Time Attitude Stabilization Adaptive Control for Spacecraft with Actuator Dynamics
For the attitude stabilization of spacecraft with actuator dynamics, this paper proposed a finite-time control law. Firstly, the dynamic property of the actuator is analyzed by an example. Then, a basic control law is derived to achieve the finite-time stability using the double fast terminal slidin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960679/ https://www.ncbi.nlm.nih.gov/pubmed/31888307 http://dx.doi.org/10.3390/s19245568 |
Sumario: | For the attitude stabilization of spacecraft with actuator dynamics, this paper proposed a finite-time control law. Firstly, the dynamic property of the actuator is analyzed by an example. Then, a basic control law is derived to achieve the finite-time stability using the double fast terminal sliding mode manifold. When there is no prior knowledge of time matrix of the actuator, an adaptive law is proposed to estimate the unknown information. An adaptive control law is derived to guarantee the finite-time convergence of the attitude, and a Lyapunov-based analysis is provided. Finally, simulations are carried out to demonstrate the effectiveness of the proposed control law to the attitude stabilization with the actuator dynamics. The results show that the high-precision attitude control performance can be achieved by the proposed scheme. |
---|