Cargando…
Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights into Two Challenging Real-World Production Settings
To build, run, and maintain reliable manufacturing machines, the condition of their components has to be continuously monitored. When following a fine-grained monitoring of these machines, challenges emerge pertaining to the (1) feeding procedure of large amounts of sensor data to downstream process...
Autores principales: | Kammerer, Klaus, Hoppenstedt, Burkhard, Pryss, Rüdiger, Stökler, Steffen, Allgaier, Johannes, Reichert, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960738/ https://www.ncbi.nlm.nih.gov/pubmed/31817471 http://dx.doi.org/10.3390/s19245370 |
Ejemplares similares
-
Process-Driven and Flow-Based Processing of Industrial Sensor Data
por: Kammerer, Klaus, et al.
Publicado: (2020) -
Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data †
por: Hoppenstedt, Burkhard, et al.
Publicado: (2019) -
Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study
por: Pryss, Rüdiger, et al.
Publicado: (2020) -
Predicting the presence of tinnitus using ecological momentary assessments
por: Breitmayer, Marius, et al.
Publicado: (2023) -
Prediction of Tinnitus Perception Based on Daily Life MHealth Data Using Country Origin and Season
por: Allgaier, Johannes, et al.
Publicado: (2022)