Cargando…
Spectral Representation via Data-Guided Sparsity for Hyperspectral Image Super-Resolution †
Hyperspectral imaging is capable of acquiring the rich spectral information of scenes and has great potential for understanding the characteristics of different materials in many applications ranging from remote sensing to medical imaging. However, due to hardware limitations, the existed hyper-/mul...
Autores principales: | Han, Xian-Hua, Sun, Yongqing, Wang, Jian, Shi, Boxin, Zheng, Yinqiang, Chen, Yen-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960746/ https://www.ncbi.nlm.nih.gov/pubmed/31817912 http://dx.doi.org/10.3390/s19245401 |
Ejemplares similares
-
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution
por: Liu, Zhe, et al.
Publicado: (2021) -
Spectral Camera based on Ghost Imaging via Sparsity Constraints
por: Liu, Zhentao, et al.
Publicado: (2016) -
Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability
por: Brezini, Salah Eddine, et al.
Publicado: (2023) -
Sparsity-Based Pixel Super Resolution for Lens-Free Digital In-line Holography
por: Song, Jun, et al.
Publicado: (2016) -
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015)