Cargando…
Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking
The aim of this paper is to describe new methods for detecting the appearance of unexpected obstacles during normal gait from EEG signals, improving the accuracy and reducing the false positive rate obtained in previous studies. This way, an exoskeleton for rehabilitation or assistance of people wit...
Autores principales: | Elvira, María, Iáñez, Eduardo, Quiles, Vicente, Ortiz, Mario, Azorín, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960749/ https://www.ncbi.nlm.nih.gov/pubmed/31835546 http://dx.doi.org/10.3390/s19245444 |
Ejemplares similares
-
Brain-machine interface based on transfer-learning for detecting the appearance of obstacles during exoskeleton-assisted walking
por: Quiles, Vicente, et al.
Publicado: (2023) -
Decoding of Turning Intention during Walking Based on EEG Biomarkers
por: Quiles, Vicente, et al.
Publicado: (2022) -
Analyzing EEG signals to detect unexpected obstacles during walking
por: Salazar-Varas, R., et al.
Publicado: (2015) -
Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent
por: Rodríguez-Ugarte, Marisol, et al.
Publicado: (2017) -
An EEG database for the cognitive assessment of motor imagery during walking with a lower-limb exoskeleton
por: Ortiz, Mario, et al.
Publicado: (2023)