Cargando…
Effect of Eco-Friendly Cellulose Nanocrystals on Physical Properties of Cement Mortars
Nanocellulose, being a material with nanodimensions, is characterized by high tensile strength, high modulus of elasticity, low thermal expansion, and relatively low density, as well as exhibiting very good electrical conductivity properties. The paper presents the results of research on cement mort...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960752/ https://www.ncbi.nlm.nih.gov/pubmed/31847175 http://dx.doi.org/10.3390/polym11122088 |
Sumario: | Nanocellulose, being a material with nanodimensions, is characterized by high tensile strength, high modulus of elasticity, low thermal expansion, and relatively low density, as well as exhibiting very good electrical conductivity properties. The paper presents the results of research on cement mortars with the addition of nanocrystals cellulose, applied in three different amounts (0.5%, 1.0%, and 1.5%) by weight of cement, including: physical and mechanical properties, frost resistance and resistance against the detrimental effect of salt, and microstructure examination (SEM). Along with an increase in amount of admixture, the weight loss following frost resistance and salt crystallization tests is reduced. Studies have shown that the addition of nanocrystalline cellulose improves the compressive and flexural strength by 27.6% and 10.9%, respectively. After 50 freezing and thawing (F–T) cycles for the mortars with 1.5% nanocellulose admixture, an improvement in frost resistance by 98% was observed. In turn, the sulfate crystallization tests indicated a 35-fold decrease in weight loss following 1.5% nanopolymer addition to the mortar. |
---|