Cargando…

Fall Detection Using Multiple Bioradars and Convolutional Neural Networks

A lack of effective non-contact methods for automatic fall detection, which may result in the development of health and life-threatening conditions, is a great problem of modern medicine, and in particular, geriatrics. The purpose of the present work was to investigate the advantages of utilizing a...

Descripción completa

Detalles Bibliográficos
Autores principales: Anishchenko, Lesya, Zhuravlev, Andrey, Chizh, Margarita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960824/
https://www.ncbi.nlm.nih.gov/pubmed/31861061
http://dx.doi.org/10.3390/s19245569
Descripción
Sumario:A lack of effective non-contact methods for automatic fall detection, which may result in the development of health and life-threatening conditions, is a great problem of modern medicine, and in particular, geriatrics. The purpose of the present work was to investigate the advantages of utilizing a multi-bioradar system in the accuracy of remote fall detection. The proposed concept combined usage of wavelet transform and deep learning to detect fall episodes. The continuous wavelet transform was used to get a time-frequency representation of the bio-radar signal and use it as input data for a pre-trained convolutional neural network AlexNet adapted to solve the problem of detecting falls. Processing of the experimental results showed that the designed multi-bioradar system can be used as a simple and view-independent approach implementing a non-contact fall detection method with an accuracy and F1-score of 99%.