Cargando…
A Spatial Adaptive Algorithm Framework for Building Pattern Recognition Using Graph Convolutional Networks
Graph learning methods, especially graph convolutional networks, have been investigated for their potential applicability in many fields of study based on topological data. Their topological data processing capabilities have proven to be powerful. However, the relationships among separate entities i...
Autores principales: | Bei, Weijia, Guo, Mingqiang, Huang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960836/ https://www.ncbi.nlm.nih.gov/pubmed/31847218 http://dx.doi.org/10.3390/s19245518 |
Ejemplares similares
-
Spatial-Temporal Graph Convolutional Framework for Yoga Action Recognition and Grading
por: Wang, Shu
Publicado: (2022) -
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
Gaze Gesture Recognition by Graph Convolutional Networks
por: Shi, Lei, et al.
Publicado: (2021) -
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020)