Cargando…
Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception
Fish and some amphibians can perform a variety of behaviors in confined and harsh environments by employing an extraordinary mechanosensory organ, the lateral line system (LLS). Inspired by the form-function of the LLS, a hydrodynamic artificial velocity sensor (HAVS) was presented in this paper. Th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960935/ https://www.ncbi.nlm.nih.gov/pubmed/31817605 http://dx.doi.org/10.3390/s19245384 |
Sumario: | Fish and some amphibians can perform a variety of behaviors in confined and harsh environments by employing an extraordinary mechanosensory organ, the lateral line system (LLS). Inspired by the form-function of the LLS, a hydrodynamic artificial velocity sensor (HAVS) was presented in this paper. The sensors featured a polarized poly (vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]/barium titanate (BTO) electrospinning nanofiber mat as the sensing layer, a polyimide (PI) film with arrays of circular cavities as the substrate, and a poly(methyl methacrylate) (PMMA) pillar as the cilium. The P(VDF-TrFE)/BTO electrospinning nanofiber mat demonstrated enhanced crystallinity and piezoelectricity compared with the pure P(VDF-TrFE) nanofiber mat. A dipole source was employed to characterize the sensing performance of the fabricated HAVS. The HAVS achieved a velocity detection limit of 0.23 mm/s, superior to the conventional nanofiber mat-based flow sensor. In addition, directivity was feasible for the HAVS, which was in accordance with the simulation results. The proposed bio-inspired flexible lateral line sensor with hydrodynamic perception ability shows promising applications in underwater robotics for real-time flow analysis. |
---|