Cargando…

Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception

Fish and some amphibians can perform a variety of behaviors in confined and harsh environments by employing an extraordinary mechanosensory organ, the lateral line system (LLS). Inspired by the form-function of the LLS, a hydrodynamic artificial velocity sensor (HAVS) was presented in this paper. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaohe, Jiang, Yonggang, Ma, Zhiqiang, Xu, Yuanhang, Zhang, Deyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960935/
https://www.ncbi.nlm.nih.gov/pubmed/31817605
http://dx.doi.org/10.3390/s19245384
Descripción
Sumario:Fish and some amphibians can perform a variety of behaviors in confined and harsh environments by employing an extraordinary mechanosensory organ, the lateral line system (LLS). Inspired by the form-function of the LLS, a hydrodynamic artificial velocity sensor (HAVS) was presented in this paper. The sensors featured a polarized poly (vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]/barium titanate (BTO) electrospinning nanofiber mat as the sensing layer, a polyimide (PI) film with arrays of circular cavities as the substrate, and a poly(methyl methacrylate) (PMMA) pillar as the cilium. The P(VDF-TrFE)/BTO electrospinning nanofiber mat demonstrated enhanced crystallinity and piezoelectricity compared with the pure P(VDF-TrFE) nanofiber mat. A dipole source was employed to characterize the sensing performance of the fabricated HAVS. The HAVS achieved a velocity detection limit of 0.23 mm/s, superior to the conventional nanofiber mat-based flow sensor. In addition, directivity was feasible for the HAVS, which was in accordance with the simulation results. The proposed bio-inspired flexible lateral line sensor with hydrodynamic perception ability shows promising applications in underwater robotics for real-time flow analysis.