Cargando…
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network
Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the lab...
Autores principales: | Rahnemoonfar, Maryam, Johnson, Jimmy, Paden, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960960/ https://www.ncbi.nlm.nih.gov/pubmed/31842359 http://dx.doi.org/10.3390/s19245479 |
Ejemplares similares
-
Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar
por: Occhipinti, Giovanni, et al.
Publicado: (2018) -
Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis
por: Alnujaim, Ibrahim, et al.
Publicado: (2019) -
Network radar countermeasure systems: integrating radar and radar countermeasures
por: Jiang, Qiuxi
Publicado: (2016) -
An Improved Performance Radar Sensor for K-Band Automotive Radars
por: Abd El-Hameed, Anwer S., et al.
Publicado: (2023) -
The use of singlebeam echo‐sounder depth data to produce demersal fish distribution models that are comparable to models produced using multibeam echo‐sounder depth
por: Landero Figueroa, Marcela Montserrat, et al.
Publicado: (2021)