Cargando…
Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems
The movement of the contact line in liquid-liquid-solid systems is a major phenomenon in natural and industrial processes. In particular, n-alkanes are widely occurring in the oil, soil pollution, and chemical industries, yet there is little knowledge on the effects of molecular chain length on the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960994/ https://www.ncbi.nlm.nih.gov/pubmed/31842470 http://dx.doi.org/10.3390/polym11122081 |
_version_ | 1783487897635127296 |
---|---|
author | Zheng, Wenxiu Sun, Chengzhen Wen, Boyao Bai, Bofeng Lichtfouse, Eric |
author_facet | Zheng, Wenxiu Sun, Chengzhen Wen, Boyao Bai, Bofeng Lichtfouse, Eric |
author_sort | Zheng, Wenxiu |
collection | PubMed |
description | The movement of the contact line in liquid-liquid-solid systems is a major phenomenon in natural and industrial processes. In particular, n-alkanes are widely occurring in the oil, soil pollution, and chemical industries, yet there is little knowledge on the effects of molecular chain length on the contact line movement. Here, we studied the effects of molecular chain length on the contact line movement in water/n-alkane/solid systems with different surface wettabilities. We used n-heptane (C(7)), n-decane (C(10)), and n-hexadecane (C(16)) as alkanes and α-quartz as the solid surface. We calculated the time-variation contact line moving velocity and also analyzed the jump frequency and the mean distance of the molecular displacement occurring within the contact line zone by molecular-kinetic theory. Molecular dynamics simulation results show that the contact line velocity decreases with increasing the chain length, originally caused by the decreasing the jump frequency and mean distance. These variations with the molecular chain length are related to the more torsions and deformations of the molecules with a longer chain length. In addition, the moving mechanism of the contact line on the same solid surface does not change at different molecular chain lengths, implying that the moving mechanism mainly depends on the three-phase wettability. |
format | Online Article Text |
id | pubmed-6960994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69609942020-01-24 Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems Zheng, Wenxiu Sun, Chengzhen Wen, Boyao Bai, Bofeng Lichtfouse, Eric Polymers (Basel) Article The movement of the contact line in liquid-liquid-solid systems is a major phenomenon in natural and industrial processes. In particular, n-alkanes are widely occurring in the oil, soil pollution, and chemical industries, yet there is little knowledge on the effects of molecular chain length on the contact line movement. Here, we studied the effects of molecular chain length on the contact line movement in water/n-alkane/solid systems with different surface wettabilities. We used n-heptane (C(7)), n-decane (C(10)), and n-hexadecane (C(16)) as alkanes and α-quartz as the solid surface. We calculated the time-variation contact line moving velocity and also analyzed the jump frequency and the mean distance of the molecular displacement occurring within the contact line zone by molecular-kinetic theory. Molecular dynamics simulation results show that the contact line velocity decreases with increasing the chain length, originally caused by the decreasing the jump frequency and mean distance. These variations with the molecular chain length are related to the more torsions and deformations of the molecules with a longer chain length. In addition, the moving mechanism of the contact line on the same solid surface does not change at different molecular chain lengths, implying that the moving mechanism mainly depends on the three-phase wettability. MDPI 2019-12-12 /pmc/articles/PMC6960994/ /pubmed/31842470 http://dx.doi.org/10.3390/polym11122081 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Wenxiu Sun, Chengzhen Wen, Boyao Bai, Bofeng Lichtfouse, Eric Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title | Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title_full | Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title_fullStr | Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title_full_unstemmed | Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title_short | Effects of Molecular Chain Length on the Contact Line Movement in Water/n-Alkane/Solid Systems |
title_sort | effects of molecular chain length on the contact line movement in water/n-alkane/solid systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960994/ https://www.ncbi.nlm.nih.gov/pubmed/31842470 http://dx.doi.org/10.3390/polym11122081 |
work_keys_str_mv | AT zhengwenxiu effectsofmolecularchainlengthonthecontactlinemovementinwaternalkanesolidsystems AT sunchengzhen effectsofmolecularchainlengthonthecontactlinemovementinwaternalkanesolidsystems AT wenboyao effectsofmolecularchainlengthonthecontactlinemovementinwaternalkanesolidsystems AT baibofeng effectsofmolecularchainlengthonthecontactlinemovementinwaternalkanesolidsystems AT lichtfouseeric effectsofmolecularchainlengthonthecontactlinemovementinwaternalkanesolidsystems |