Cargando…
Road Surface Damage Detection Using Fully Convolutional Neural Networks and Semi-Supervised Learning
The various defects that occur on asphalt pavement are a direct cause car accidents, and countermeasures are required because they cause significantly dangerous situations. In this paper, we propose fully convolutional neural networks (CNN)-based road surface damage detection with semi-supervised le...
Autores principales: | Chun, Chanjun, Ryu, Seung-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961057/ https://www.ncbi.nlm.nih.gov/pubmed/31842513 http://dx.doi.org/10.3390/s19245501 |
Ejemplares similares
-
Classification and Segmentation of Longitudinal Road Marking Using Convolutional Neural Networks for Dynamic Retroreflection Estimation
por: Chun, Chanjun, et al.
Publicado: (2020) -
Deep semi-supervised learning for automatic segmentation of inferior alveolar nerve using a convolutional neural network
por: Lim, Ho-Kyung, et al.
Publicado: (2021) -
Detection of Road-Surface Anomalies Using a Smartphone Camera and Accelerometer
por: Lee, Taehee, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Self-supervised and semi-supervised learning for road condition estimation from distributed road-side cameras
por: Garcea, Fabio, et al.
Publicado: (2022)