Cargando…
Acceleration of the PDHGM on Partially Strongly Convex Functions
We propose several variants of the primal–dual method due to Chambolle and Pock. Without requiring full strong convexity of the objective functions, our methods are accelerated on subspaces with strong convexity. This yields mixed rates, [Formula: see text] with respect to initialisation and O(1 / N...
Autores principales: | Valkonen, Tuomo, Pock, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961483/ https://www.ncbi.nlm.nih.gov/pubmed/32009737 http://dx.doi.org/10.1007/s10851-016-0692-2 |
Ejemplares similares
-
Strongly Convex Divergences
por: Melbourne, James
Publicado: (2020) -
Jensen–Steffensen inequality for strongly convex functions
por: Klaričić Bakula, M.
Publicado: (2018) -
Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus
por: Kalsoom, Humaira, et al.
Publicado: (2021) -
A Convex Variational Model for Learning Convolutional Image Atoms from Incomplete Data
por: Chambolle, A., et al.
Publicado: (2019) -
Convex functions, partial orderings, and statistical applications
por: Pecaric, Josip E, et al.
Publicado: (1992)