Cargando…
Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction
BACKGROUND: Digital images are captured using sensors during the data acquisition phase, where they are often contaminated by noise (an undesired random signal). Such noise can also be produced during transmission or by poor-quality lossy image compression. Reducing the noise and enhancing the image...
Autores principales: | Alkinani, Monagi H., El-Sakka, Mahmoud R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961526/ https://www.ncbi.nlm.nih.gov/pubmed/32010201 http://dx.doi.org/10.1186/s13640-017-0203-4 |
Ejemplares similares
-
Image denoising via a non-local patch graph total variation
por: Zhang, Yan, et al.
Publicado: (2019) -
Denoising MR Images Using Non-Local Means Filter with Combined Patch and Pixel Similarity
por: Zhang, Xinyuan, et al.
Publicado: (2014) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
Improved BM3D image denoising using SSIM-optimized Wiener filter
por: Hasan, Mahmud, et al.
Publicado: (2018) -
A loss-based patch label denoising method for improving whole-slide image analysis using a convolutional neural network
por: Ashraf, Murtaza, et al.
Publicado: (2022)