Cargando…

Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9

Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRI...

Descripción completa

Detalles Bibliográficos
Autores principales: Agudelo, Daniel, Carter, Sophie, Velimirovic, Minja, Duringer, Alexis, Rivest, Jean-François, Levesque, Sébastien, Loehr, Jeremy, Mouchiroud, Mathilde, Cyr, Denis, Waters, Paula J., Laplante, Mathieu, Moineau, Sylvain, Goulet, Adeline, Doyon, Yannick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961573/
https://www.ncbi.nlm.nih.gov/pubmed/31900288
http://dx.doi.org/10.1101/gr.255414.119
Descripción
Sumario:Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRISPR1-Cas9 (St1Cas9) system. We found that St1Cas9 strain variants enable targeting to five distinct A-rich PAMs and provide a structural basis for their specificities. The small size of this ortholog enables expression of the holoenzyme from a single adeno-associated viral vector for in vivo editing applications. Delivery of St1Cas9 to the neonatal liver efficiently rewired metabolic pathways, leading to phenotypic rescue in a mouse model of hereditary tyrosinemia. These robust enzymes expand and complement current editing platforms available for tailoring mammalian genomes.