Cargando…
Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom
Quantitative photoacoustic tomography aims to recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961715/ https://www.ncbi.nlm.nih.gov/pubmed/31956487 http://dx.doi.org/10.1016/j.pacs.2019.100157 |
_version_ | 1783488034971320320 |
---|---|
author | Buchmann, Jens Kaplan, Bernhard Powell, Samuel Prohaska, Steffen Laufer, Jan |
author_facet | Buchmann, Jens Kaplan, Bernhard Powell, Samuel Prohaska, Steffen Laufer, Jan |
author_sort | Buchmann, Jens |
collection | PubMed |
description | Quantitative photoacoustic tomography aims to recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies. |
format | Online Article Text |
id | pubmed-6961715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69617152020-01-17 Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom Buchmann, Jens Kaplan, Bernhard Powell, Samuel Prohaska, Steffen Laufer, Jan Photoacoustics Research Article Quantitative photoacoustic tomography aims to recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies. Elsevier 2020-01-08 /pmc/articles/PMC6961715/ /pubmed/31956487 http://dx.doi.org/10.1016/j.pacs.2019.100157 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Buchmann, Jens Kaplan, Bernhard Powell, Samuel Prohaska, Steffen Laufer, Jan Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title | Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title_full | Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title_fullStr | Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title_full_unstemmed | Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title_short | Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom |
title_sort | quantitative pa tomography of high resolution 3-d images: experimental validation in a tissue phantom |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961715/ https://www.ncbi.nlm.nih.gov/pubmed/31956487 http://dx.doi.org/10.1016/j.pacs.2019.100157 |
work_keys_str_mv | AT buchmannjens quantitativepatomographyofhighresolution3dimagesexperimentalvalidationinatissuephantom AT kaplanbernhard quantitativepatomographyofhighresolution3dimagesexperimentalvalidationinatissuephantom AT powellsamuel quantitativepatomographyofhighresolution3dimagesexperimentalvalidationinatissuephantom AT prohaskasteffen quantitativepatomographyofhighresolution3dimagesexperimentalvalidationinatissuephantom AT lauferjan quantitativepatomographyofhighresolution3dimagesexperimentalvalidationinatissuephantom |