Cargando…
A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Thoracic Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961739/ https://www.ncbi.nlm.nih.gov/pubmed/31574238 http://dx.doi.org/10.1164/rccm.201904-0831OC |
_version_ | 1783488040065302528 |
---|---|
author | Martinez-Zayas, Gabriela Almeida, Francisco A. Simoff, Michael J. Yarmus, Lonny Molina, Sofia Young, Benjamin Feller-Kopman, David Sagar, Ala-Eddin S. Gildea, Thomas Debiane, Labib G. Grosu, Horiana B. Casal, Roberto F. Arain, Muhammad H. Eapen, George A. Jimenez, Carlos A. Noor, Laila Z. Baghaie, Shiva Song, Juhee Li, Liang Ost, David E. |
author_facet | Martinez-Zayas, Gabriela Almeida, Francisco A. Simoff, Michael J. Yarmus, Lonny Molina, Sofia Young, Benjamin Feller-Kopman, David Sagar, Ala-Eddin S. Gildea, Thomas Debiane, Labib G. Grosu, Horiana B. Casal, Roberto F. Arain, Muhammad H. Eapen, George A. Jimenez, Carlos A. Noor, Laila Z. Baghaie, Shiva Song, Juhee Li, Liang Ost, David E. |
author_sort | Martinez-Zayas, Gabriela |
collection | PubMed |
description | Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods: Consecutive patients with clinical-radiographic stage T1 to T3, N0 to N3, and M0 NSCLC who underwent endobronchial ultrasound–guided staging from a single center were included. Multivariate ordinal logistic regression analysis was used to predict the presence of N0, N1, or N2|3 disease. Temporal validation used consecutive patients from 3 years later at the same center. External validation used three other hospitals. Measurements and Main Results: In the model development cohort (n = 633), younger age, central location, adenocarcinoma, and higher positron emission tomography–computed tomography nodal stage were associated with a higher probability of having advanced nodal disease. Areas under the receiver operating characteristic curve (AUCs) were 0.84 and 0.86 for predicting N1 or higher (vs. N0) disease and N2|3 (vs. N0 or N1) disease, respectively. Model fit was acceptable (Hosmer-Lemeshow, P = 0.960; Brier score, 0.36). In the temporal validation cohort (n = 473), AUCs were 0.86 and 0.88. Model fit was acceptable (Hosmer-Lemeshow, P = 0.172; Brier score, 0.30). In the external validation cohort (n = 722), AUCs were 0.86 and 0.88 but required calibration (Hosmer-Lemeshow, P < 0.001; Brier score, 0.38). Calibration using the general calibration method resulted in acceptable model fit (Hosmer-Lemeshow, P = 0.094; Brier score, 0.34). Conclusions: This prediction model can estimate the probability of N0, N1, and N2|3 disease in patients with NSCLC. The model has the potential to facilitate decision-making in patients with NSCLC when stereotactic ablative radiotherapy is an option. |
format | Online Article Text |
id | pubmed-6961739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Thoracic Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69617392021-01-15 A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER Martinez-Zayas, Gabriela Almeida, Francisco A. Simoff, Michael J. Yarmus, Lonny Molina, Sofia Young, Benjamin Feller-Kopman, David Sagar, Ala-Eddin S. Gildea, Thomas Debiane, Labib G. Grosu, Horiana B. Casal, Roberto F. Arain, Muhammad H. Eapen, George A. Jimenez, Carlos A. Noor, Laila Z. Baghaie, Shiva Song, Juhee Li, Liang Ost, David E. Am J Respir Crit Care Med Original Articles Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods: Consecutive patients with clinical-radiographic stage T1 to T3, N0 to N3, and M0 NSCLC who underwent endobronchial ultrasound–guided staging from a single center were included. Multivariate ordinal logistic regression analysis was used to predict the presence of N0, N1, or N2|3 disease. Temporal validation used consecutive patients from 3 years later at the same center. External validation used three other hospitals. Measurements and Main Results: In the model development cohort (n = 633), younger age, central location, adenocarcinoma, and higher positron emission tomography–computed tomography nodal stage were associated with a higher probability of having advanced nodal disease. Areas under the receiver operating characteristic curve (AUCs) were 0.84 and 0.86 for predicting N1 or higher (vs. N0) disease and N2|3 (vs. N0 or N1) disease, respectively. Model fit was acceptable (Hosmer-Lemeshow, P = 0.960; Brier score, 0.36). In the temporal validation cohort (n = 473), AUCs were 0.86 and 0.88. Model fit was acceptable (Hosmer-Lemeshow, P = 0.172; Brier score, 0.30). In the external validation cohort (n = 722), AUCs were 0.86 and 0.88 but required calibration (Hosmer-Lemeshow, P < 0.001; Brier score, 0.38). Calibration using the general calibration method resulted in acceptable model fit (Hosmer-Lemeshow, P = 0.094; Brier score, 0.34). Conclusions: This prediction model can estimate the probability of N0, N1, and N2|3 disease in patients with NSCLC. The model has the potential to facilitate decision-making in patients with NSCLC when stereotactic ablative radiotherapy is an option. American Thoracic Society 2020-01-15 2020-01-15 /pmc/articles/PMC6961739/ /pubmed/31574238 http://dx.doi.org/10.1164/rccm.201904-0831OC Text en Copyright © 2020 by the American Thoracic Society https://creativecommons.org/licenses/by-nc-nd/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org). |
spellingShingle | Original Articles Martinez-Zayas, Gabriela Almeida, Francisco A. Simoff, Michael J. Yarmus, Lonny Molina, Sofia Young, Benjamin Feller-Kopman, David Sagar, Ala-Eddin S. Gildea, Thomas Debiane, Labib G. Grosu, Horiana B. Casal, Roberto F. Arain, Muhammad H. Eapen, George A. Jimenez, Carlos A. Noor, Laila Z. Baghaie, Shiva Song, Juhee Li, Liang Ost, David E. A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title | A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title_full | A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title_fullStr | A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title_full_unstemmed | A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title_short | A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER |
title_sort | prediction model to help with oncologic mediastinal evaluation for radiation: homer |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961739/ https://www.ncbi.nlm.nih.gov/pubmed/31574238 http://dx.doi.org/10.1164/rccm.201904-0831OC |
work_keys_str_mv | AT martinezzayasgabriela apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT almeidafranciscoa apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT simoffmichaelj apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT yarmuslonny apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT molinasofia apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT youngbenjamin apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT fellerkopmandavid apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT sagaralaeddins apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT gildeathomas apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT debianelabibg apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT grosuhorianab apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT casalrobertof apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT arainmuhammadh apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT eapengeorgea apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT jimenezcarlosa apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT noorlailaz apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT baghaieshiva apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT songjuhee apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT liliang apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT ostdavide apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT martinezzayasgabriela predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT almeidafranciscoa predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT simoffmichaelj predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT yarmuslonny predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT molinasofia predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT youngbenjamin predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT fellerkopmandavid predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT sagaralaeddins predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT gildeathomas predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT debianelabibg predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT grosuhorianab predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT casalrobertof predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT arainmuhammadh predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT eapengeorgea predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT jimenezcarlosa predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT noorlailaz predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT baghaieshiva predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT songjuhee predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT liliang predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer AT ostdavide predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer |