Cargando…

A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER

Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez-Zayas, Gabriela, Almeida, Francisco A., Simoff, Michael J., Yarmus, Lonny, Molina, Sofia, Young, Benjamin, Feller-Kopman, David, Sagar, Ala-Eddin S., Gildea, Thomas, Debiane, Labib G., Grosu, Horiana B., Casal, Roberto F., Arain, Muhammad H., Eapen, George A., Jimenez, Carlos A., Noor, Laila Z., Baghaie, Shiva, Song, Juhee, Li, Liang, Ost, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Thoracic Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961739/
https://www.ncbi.nlm.nih.gov/pubmed/31574238
http://dx.doi.org/10.1164/rccm.201904-0831OC
_version_ 1783488040065302528
author Martinez-Zayas, Gabriela
Almeida, Francisco A.
Simoff, Michael J.
Yarmus, Lonny
Molina, Sofia
Young, Benjamin
Feller-Kopman, David
Sagar, Ala-Eddin S.
Gildea, Thomas
Debiane, Labib G.
Grosu, Horiana B.
Casal, Roberto F.
Arain, Muhammad H.
Eapen, George A.
Jimenez, Carlos A.
Noor, Laila Z.
Baghaie, Shiva
Song, Juhee
Li, Liang
Ost, David E.
author_facet Martinez-Zayas, Gabriela
Almeida, Francisco A.
Simoff, Michael J.
Yarmus, Lonny
Molina, Sofia
Young, Benjamin
Feller-Kopman, David
Sagar, Ala-Eddin S.
Gildea, Thomas
Debiane, Labib G.
Grosu, Horiana B.
Casal, Roberto F.
Arain, Muhammad H.
Eapen, George A.
Jimenez, Carlos A.
Noor, Laila Z.
Baghaie, Shiva
Song, Juhee
Li, Liang
Ost, David E.
author_sort Martinez-Zayas, Gabriela
collection PubMed
description Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods: Consecutive patients with clinical-radiographic stage T1 to T3, N0 to N3, and M0 NSCLC who underwent endobronchial ultrasound–guided staging from a single center were included. Multivariate ordinal logistic regression analysis was used to predict the presence of N0, N1, or N2|3 disease. Temporal validation used consecutive patients from 3 years later at the same center. External validation used three other hospitals. Measurements and Main Results: In the model development cohort (n = 633), younger age, central location, adenocarcinoma, and higher positron emission tomography–computed tomography nodal stage were associated with a higher probability of having advanced nodal disease. Areas under the receiver operating characteristic curve (AUCs) were 0.84 and 0.86 for predicting N1 or higher (vs. N0) disease and N2|3 (vs. N0 or N1) disease, respectively. Model fit was acceptable (Hosmer-Lemeshow, P = 0.960; Brier score, 0.36). In the temporal validation cohort (n = 473), AUCs were 0.86 and 0.88. Model fit was acceptable (Hosmer-Lemeshow, P = 0.172; Brier score, 0.30). In the external validation cohort (n = 722), AUCs were 0.86 and 0.88 but required calibration (Hosmer-Lemeshow, P < 0.001; Brier score, 0.38). Calibration using the general calibration method resulted in acceptable model fit (Hosmer-Lemeshow, P = 0.094; Brier score, 0.34). Conclusions: This prediction model can estimate the probability of N0, N1, and N2|3 disease in patients with NSCLC. The model has the potential to facilitate decision-making in patients with NSCLC when stereotactic ablative radiotherapy is an option.
format Online
Article
Text
id pubmed-6961739
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Thoracic Society
record_format MEDLINE/PubMed
spelling pubmed-69617392021-01-15 A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER Martinez-Zayas, Gabriela Almeida, Francisco A. Simoff, Michael J. Yarmus, Lonny Molina, Sofia Young, Benjamin Feller-Kopman, David Sagar, Ala-Eddin S. Gildea, Thomas Debiane, Labib G. Grosu, Horiana B. Casal, Roberto F. Arain, Muhammad H. Eapen, George A. Jimenez, Carlos A. Noor, Laila Z. Baghaie, Shiva Song, Juhee Li, Liang Ost, David E. Am J Respir Crit Care Med Original Articles Rationale: When stereotactic ablative radiotherapy is an option for patients with non–small cell lung cancer (NSCLC), distinguishing between N0, N1, and N2 or N3 (N2|3) disease is important. Objectives: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. Methods: Consecutive patients with clinical-radiographic stage T1 to T3, N0 to N3, and M0 NSCLC who underwent endobronchial ultrasound–guided staging from a single center were included. Multivariate ordinal logistic regression analysis was used to predict the presence of N0, N1, or N2|3 disease. Temporal validation used consecutive patients from 3 years later at the same center. External validation used three other hospitals. Measurements and Main Results: In the model development cohort (n = 633), younger age, central location, adenocarcinoma, and higher positron emission tomography–computed tomography nodal stage were associated with a higher probability of having advanced nodal disease. Areas under the receiver operating characteristic curve (AUCs) were 0.84 and 0.86 for predicting N1 or higher (vs. N0) disease and N2|3 (vs. N0 or N1) disease, respectively. Model fit was acceptable (Hosmer-Lemeshow, P = 0.960; Brier score, 0.36). In the temporal validation cohort (n = 473), AUCs were 0.86 and 0.88. Model fit was acceptable (Hosmer-Lemeshow, P = 0.172; Brier score, 0.30). In the external validation cohort (n = 722), AUCs were 0.86 and 0.88 but required calibration (Hosmer-Lemeshow, P < 0.001; Brier score, 0.38). Calibration using the general calibration method resulted in acceptable model fit (Hosmer-Lemeshow, P = 0.094; Brier score, 0.34). Conclusions: This prediction model can estimate the probability of N0, N1, and N2|3 disease in patients with NSCLC. The model has the potential to facilitate decision-making in patients with NSCLC when stereotactic ablative radiotherapy is an option. American Thoracic Society 2020-01-15 2020-01-15 /pmc/articles/PMC6961739/ /pubmed/31574238 http://dx.doi.org/10.1164/rccm.201904-0831OC Text en Copyright © 2020 by the American Thoracic Society https://creativecommons.org/licenses/by-nc-nd/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).
spellingShingle Original Articles
Martinez-Zayas, Gabriela
Almeida, Francisco A.
Simoff, Michael J.
Yarmus, Lonny
Molina, Sofia
Young, Benjamin
Feller-Kopman, David
Sagar, Ala-Eddin S.
Gildea, Thomas
Debiane, Labib G.
Grosu, Horiana B.
Casal, Roberto F.
Arain, Muhammad H.
Eapen, George A.
Jimenez, Carlos A.
Noor, Laila Z.
Baghaie, Shiva
Song, Juhee
Li, Liang
Ost, David E.
A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title_full A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title_fullStr A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title_full_unstemmed A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title_short A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER
title_sort prediction model to help with oncologic mediastinal evaluation for radiation: homer
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961739/
https://www.ncbi.nlm.nih.gov/pubmed/31574238
http://dx.doi.org/10.1164/rccm.201904-0831OC
work_keys_str_mv AT martinezzayasgabriela apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT almeidafranciscoa apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT simoffmichaelj apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT yarmuslonny apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT molinasofia apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT youngbenjamin apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT fellerkopmandavid apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT sagaralaeddins apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT gildeathomas apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT debianelabibg apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT grosuhorianab apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT casalrobertof apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT arainmuhammadh apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT eapengeorgea apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT jimenezcarlosa apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT noorlailaz apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT baghaieshiva apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT songjuhee apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT liliang apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT ostdavide apredictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT martinezzayasgabriela predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT almeidafranciscoa predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT simoffmichaelj predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT yarmuslonny predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT molinasofia predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT youngbenjamin predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT fellerkopmandavid predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT sagaralaeddins predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT gildeathomas predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT debianelabibg predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT grosuhorianab predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT casalrobertof predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT arainmuhammadh predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT eapengeorgea predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT jimenezcarlosa predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT noorlailaz predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT baghaieshiva predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT songjuhee predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT liliang predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer
AT ostdavide predictionmodeltohelpwithoncologicmediastinalevaluationforradiationhomer