Cargando…
In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization
Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this ef...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961881/ https://www.ncbi.nlm.nih.gov/pubmed/31940365 http://dx.doi.org/10.1371/journal.pone.0226185 |
_version_ | 1783488062978785280 |
---|---|
author | Ezzat, Marwa I. Okba, Mona M. Ahmed, Sherif H. El-Banna, Hossny A. Prince, Abdelbary Mohamed, Shanaz O. Ezzat, Shahira M. |
author_facet | Ezzat, Marwa I. Okba, Mona M. Ahmed, Sherif H. El-Banna, Hossny A. Prince, Abdelbary Mohamed, Shanaz O. Ezzat, Shahira M. |
author_sort | Ezzat, Marwa I. |
collection | PubMed |
description | Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl(4)-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl(4)-induced hepatotoxicity in rats at different doses after determination of its LD(50). Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl(4) injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC(50) 11.6 ± 2 μg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl(4). AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl(4) on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl(4)-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential. |
format | Online Article Text |
id | pubmed-6961881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69618812020-01-26 In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization Ezzat, Marwa I. Okba, Mona M. Ahmed, Sherif H. El-Banna, Hossny A. Prince, Abdelbary Mohamed, Shanaz O. Ezzat, Shahira M. PLoS One Research Article Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl(4)-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl(4)-induced hepatotoxicity in rats at different doses after determination of its LD(50). Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl(4) injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC(50) 11.6 ± 2 μg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl(4). AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl(4) on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl(4)-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential. Public Library of Science 2020-01-15 /pmc/articles/PMC6961881/ /pubmed/31940365 http://dx.doi.org/10.1371/journal.pone.0226185 Text en © 2020 Ezzat et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ezzat, Marwa I. Okba, Mona M. Ahmed, Sherif H. El-Banna, Hossny A. Prince, Abdelbary Mohamed, Shanaz O. Ezzat, Shahira M. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title | In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title_full | In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title_fullStr | In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title_full_unstemmed | In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title_short | In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization |
title_sort | in-depth hepatoprotective mechanistic study of phyllanthus niruri: in vitro and in vivo studies and its chemical characterization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961881/ https://www.ncbi.nlm.nih.gov/pubmed/31940365 http://dx.doi.org/10.1371/journal.pone.0226185 |
work_keys_str_mv | AT ezzatmarwai indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT okbamonam indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT ahmedsherifh indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT elbannahossnya indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT princeabdelbary indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT mohamedshanazo indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization AT ezzatshahiram indepthhepatoprotectivemechanisticstudyofphyllanthusniruriinvitroandinvivostudiesanditschemicalcharacterization |