Cargando…
Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays
The brain performs intelligent tasks with extremely low energy consumption. This work takes its inspiration from two strategies used by the brain to achieve this energy efficiency: the absence of separation between computing and memory functions and reliance on low-precision computation. The emergen...
Autores principales: | Hirtzlin, Tifenn, Bocquet, Marc, Penkovsky, Bogdan, Klein, Jacques-Olivier, Nowak, Etienne, Vianello, Elisa, Portal, Jean-Michel, Querlioz, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962102/ https://www.ncbi.nlm.nih.gov/pubmed/31998059 http://dx.doi.org/10.3389/fnins.2019.01383 |
Ejemplares similares
-
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
por: Bonnet, Djohan, et al.
Publicado: (2023) -
Neural-like computing with populations of superparamagnetic basis functions
por: Mizrahi, Alice, et al.
Publicado: (2018) -
Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing
por: Parmar, Vivek, et al.
Publicado: (2022) -
On-sensor binarized CNN inference with dynamic model swapping in pixel processor arrays
por: Liu, Yanan, et al.
Publicado: (2022)