Cargando…
A Multi-Task Representation Learning Architecture for Enhanced Graph Classification
Composed of nodes and edges, graph structured data are organized in the non-Euclidean geometric space and ubiquitous especially in chemical compounds, proteins, etc. They usually contain rich structure information, and how to effectively extract inherent features of them is of great significance on...
Autores principales: | Xie, Yu, Gong, Maoguo, Gao, Yuan, Qin, A. K., Fan, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962136/ https://www.ncbi.nlm.nih.gov/pubmed/31998065 http://dx.doi.org/10.3389/fnins.2019.01395 |
Ejemplares similares
-
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020) -
Multi-Task Learning Based Network Embedding
por: Wang, Shanfeng, et al.
Publicado: (2020) -
A Privacy-Preserving Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition
por: Zhang, Chen, et al.
Publicado: (2020) -
Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI
por: Chu, Ying, et al.
Publicado: (2022) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021)