Cargando…
Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach
This study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 25,285 B-scans from 1,338 eyes of 706 subjects. Training was done to predict RNFL thickness from...
Autores principales: | Mariottoni, Eduardo B., Jammal, Alessandro A., Urata, Carla N., Berchuck, Samuel I., Thompson, Atalie C., Estrela, Tais, Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962147/ https://www.ncbi.nlm.nih.gov/pubmed/31941958 http://dx.doi.org/10.1038/s41598-019-57196-y |
Ejemplares similares
-
Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm
por: Jammal, Alessandro A., et al.
Publicado: (2019) -
The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma
por: Jammal, Alessandro A., et al.
Publicado: (2020) -
Predicting Age From Optical Coherence Tomography Scans With Deep Learning
por: Shigueoka, Leonardo S., et al.
Publicado: (2021) -
Segmentation error in spectral domain optical coherence tomography measures of the retinal nerve fibre layer thickness in idiopathic intracranial hypertension
por: Aojula, Anuriti, et al.
Publicado: (2018) -
The Paediatric Glaucoma Diagnostic Ability of Optical Coherence Tomography: A Comparison of Macular Segmentation and Peripapillary Retinal Nerve Fibre Layer Thickness
por: Lever, Mael, et al.
Publicado: (2021)