Cargando…

Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimental...

Descripción completa

Detalles Bibliográficos
Autores principales: Dijk, Frederike, Veenstra, Veronique L., Soer, Eline C., Dings, Mark P. G., Zhao, Lan, Halfwerk, Johannes B., Hooijer, Gerrit K., Damhofer, Helene, Marzano, Marco, Steins, Anne, Waasdorp, Cynthia, Busch, Olivier R., Besselink, Marc G., Tol, Johanna A., Welling, Lieke, van Rijssen, Lennart B., Klompmaker, Sjors, Wilmink, Hanneke W., van Laarhoven, Hanneke W., Medema, Jan Paul, Vermeulen, Louis, van Hooff , Sander R., Koster, Jan, Verheij, Joanne, van de Vijver, Marc J., Wang, Xin, Bijlsma, Maarten F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962149/
https://www.ncbi.nlm.nih.gov/pubmed/31941932
http://dx.doi.org/10.1038/s41598-019-56826-9
_version_ 1783488103735885824
author Dijk, Frederike
Veenstra, Veronique L.
Soer, Eline C.
Dings, Mark P. G.
Zhao, Lan
Halfwerk, Johannes B.
Hooijer, Gerrit K.
Damhofer, Helene
Marzano, Marco
Steins, Anne
Waasdorp, Cynthia
Busch, Olivier R.
Besselink, Marc G.
Tol, Johanna A.
Welling, Lieke
van Rijssen, Lennart B.
Klompmaker, Sjors
Wilmink, Hanneke W.
van Laarhoven, Hanneke W.
Medema, Jan Paul
Vermeulen, Louis
van Hooff , Sander R.
Koster, Jan
Verheij, Joanne
van de Vijver, Marc J.
Wang, Xin
Bijlsma, Maarten F.
author_facet Dijk, Frederike
Veenstra, Veronique L.
Soer, Eline C.
Dings, Mark P. G.
Zhao, Lan
Halfwerk, Johannes B.
Hooijer, Gerrit K.
Damhofer, Helene
Marzano, Marco
Steins, Anne
Waasdorp, Cynthia
Busch, Olivier R.
Besselink, Marc G.
Tol, Johanna A.
Welling, Lieke
van Rijssen, Lennart B.
Klompmaker, Sjors
Wilmink, Hanneke W.
van Laarhoven, Hanneke W.
Medema, Jan Paul
Vermeulen, Louis
van Hooff , Sander R.
Koster, Jan
Verheij, Joanne
van de Vijver, Marc J.
Wang, Xin
Bijlsma, Maarten F.
author_sort Dijk, Frederike
collection PubMed
description Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment.
format Online
Article
Text
id pubmed-6962149
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69621492020-01-23 Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems Dijk, Frederike Veenstra, Veronique L. Soer, Eline C. Dings, Mark P. G. Zhao, Lan Halfwerk, Johannes B. Hooijer, Gerrit K. Damhofer, Helene Marzano, Marco Steins, Anne Waasdorp, Cynthia Busch, Olivier R. Besselink, Marc G. Tol, Johanna A. Welling, Lieke van Rijssen, Lennart B. Klompmaker, Sjors Wilmink, Hanneke W. van Laarhoven, Hanneke W. Medema, Jan Paul Vermeulen, Louis van Hooff , Sander R. Koster, Jan Verheij, Joanne van de Vijver, Marc J. Wang, Xin Bijlsma, Maarten F. Sci Rep Article Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment. Nature Publishing Group UK 2020-01-15 /pmc/articles/PMC6962149/ /pubmed/31941932 http://dx.doi.org/10.1038/s41598-019-56826-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Dijk, Frederike
Veenstra, Veronique L.
Soer, Eline C.
Dings, Mark P. G.
Zhao, Lan
Halfwerk, Johannes B.
Hooijer, Gerrit K.
Damhofer, Helene
Marzano, Marco
Steins, Anne
Waasdorp, Cynthia
Busch, Olivier R.
Besselink, Marc G.
Tol, Johanna A.
Welling, Lieke
van Rijssen, Lennart B.
Klompmaker, Sjors
Wilmink, Hanneke W.
van Laarhoven, Hanneke W.
Medema, Jan Paul
Vermeulen, Louis
van Hooff , Sander R.
Koster, Jan
Verheij, Joanne
van de Vijver, Marc J.
Wang, Xin
Bijlsma, Maarten F.
Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title_full Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title_fullStr Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title_full_unstemmed Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title_short Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
title_sort unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962149/
https://www.ncbi.nlm.nih.gov/pubmed/31941932
http://dx.doi.org/10.1038/s41598-019-56826-9
work_keys_str_mv AT dijkfrederike unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT veenstraveroniquel unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT soerelinec unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT dingsmarkpg unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT zhaolan unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT halfwerkjohannesb unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT hooijergerritk unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT damhoferhelene unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT marzanomarco unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT steinsanne unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT waasdorpcynthia unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT buscholivierr unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT besselinkmarcg unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT toljohannaa unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT wellinglieke unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT vanrijssenlennartb unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT klompmakersjors unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT wilminkhannekew unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT vanlaarhovenhannekew unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT medemajanpaul unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT vermeulenlouis unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT vanhooffsanderr unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT kosterjan unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT verheijjoanne unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT vandevijvermarcj unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT wangxin unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems
AT bijlsmamaartenf unsupervisedclassdiscoveryinpancreaticductaladenocarcinomarevealscellintrinsicmesenchymalfeaturesandhighconcordancebetweenexistingclassificationsystems