Cargando…
Lizard Brain: Tackling Locally Low-Dimensional Yet Globally Complex Organization of Multi-Dimensional Datasets
Machine learning deals with datasets characterized by high dimensionality. However, in many cases, the intrinsic dimensionality of the datasets is surprisingly low. For example, the dimensionality of a robot's perception space can be large and multi-modal but its variables can have more or less...
Autores principales: | Bac, Jonathan, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962297/ https://www.ncbi.nlm.nih.gov/pubmed/31998109 http://dx.doi.org/10.3389/fnbot.2019.00110 |
Ejemplares similares
-
Minimum Spanning vs. Principal Trees for Structured Approximations of Multi-Dimensional Datasets
por: Chervov, Alexander, et al.
Publicado: (2020) -
Denoising High-Field Multi-Dimensional MRI With Local Complex PCA
por: Bazin, Pierre-Louis, et al.
Publicado: (2019) -
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
por: Albergante, Luca, et al.
Publicado: (2020) -
A Manual Segmentation Tool for Three-Dimensional Neuron Datasets
por: Magliaro, Chiara, et al.
Publicado: (2017) -
Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience
por: Mackevicius, Emily L, et al.
Publicado: (2019)