Cargando…
Relativistic Surface Wave Oscillator in Y-Band with Large Oversized Structures Modulated by Dual Reflectors
To increase the generation efficiency of the terahertz wave in the Y band, the idea of dual-reflector is introduced in the relativistic surface wave oscillator (SWO) with large oversized structures. The dual-reflector and the slow-wave structure (SWS) construct a resonator where the field strength o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962331/ https://www.ncbi.nlm.nih.gov/pubmed/31941890 http://dx.doi.org/10.1038/s41598-019-55525-9 |
Sumario: | To increase the generation efficiency of the terahertz wave in the Y band, the idea of dual-reflector is introduced in the relativistic surface wave oscillator (SWO) with large oversized structures. The dual-reflector and the slow-wave structure (SWS) construct a resonator where the field strength of TM(01) mode inside is intensively enhanced and then the efficiency is increased. The pre-modulation on electron beam caused by the reflector is also helpful in improving the output power. Meanwhile, the reflector can reduce the loss of negatively going electrons. Through the particle-in-cell (PIC) simulations, the optimized structure is tested to be stable and little power is transmitting back to the diode area. The output power reaches 138 MW in the perfectly electrical conductivity condition and the frequency is 337.7 GHz with a pure spectrum. The device’s efficiency is increased from 10.7% to 16.2%, compared with the device without any reflectors. The performance of device with lossy material is also focused on. In the situation of copper device, the output power is about 41 MW under the same input conditions and the corresponding efficiency is about 4.8%. |
---|